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Abstract

While statistical methods for analyzing cluster randomized trials with continuous and binary 

outcomes have been extensively studied and compared, little comparative evidence has been 

provided for analyzing cluster randomized trials with survival outcomes in the presence of 

competing risks. Motivated by the Strategies to Reduce Injuries and Develop Confidence in 

Elders trial, we carried out a simulation study to compare the operating characteristics of several 

existing population-averaged survival models, including the marginal Cox, marginal Fine and 

Gray, and marginal multi-state models. For each model, we found that adjusting for the intraclass 

correlations through the sandwich variance estimator effectively maintained the type I error rate 

when the number of clusters is large. With no more than 30 clusters, however, the sandwich 

variance estimator can exhibit notable negative bias, and a permutation test provides better 

control of type I error inflation. Under the alternative, the power for each model is differentially 

affected by two types of intraclass correlations — the within-individual and between-individual 

correlations. Furthermore, the marginal Fine and Gray model occasionally leads to higher power 

than the marginal Cox model or the marginal multi-state model, especially when the competing 

event rate is high. Finally, we provide an illustrative analysis of Strategies to Reduce Injuries and 

Develop Confidence in Elders trial using each analytical strategy considered.
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1. Introduction

Cluster randomized trials (CRTs) are studies in which an intervention is delivered at the 

cluster level.1 Common reasons for cluster-level randomization include administrative and 

logistical convenience, prevention of treatment contamination and ethical reasons. Statistical 

methods for the design and analysis of CRTs have been discussed extensively for decades.2,3 

As the popularity of adopting pragmatic clinical trials increases due to their ability to 

more closely resemble health care practice, there is a greater need for rigorous statistical 

methodology applicable to CRTs with more complex data structures. For example, these 

complexities could arise due to multiple levels of clustering, such as when participants 

are nested within physicians nested within practices. Further, participants can experience a 

terminal event such as death, which could compete with non-terminal events of interest (e.g. 

injuries, asthma attacks, stroke).4 While clustered time-to-event outcomes present critical 

challenges due to censoring and competing risks, there are limited empirical evaluations of 

analytical strategies in the context of CRTs for such outcomes (an exception is Stedman et 

al.5 but without competing risks). The complexities of clustered time-to-event data require 

careful consideration in order to ensure that models adequately reflect the data structure and 

that we avoid erroneous conclusions.

Motivated by the Strategies to Reduce Injuries and Develop Confidence in Elders (STRIDE) 

trial,6–8 this article aims to provide an empirical comparison between several existing 

survival models for analyzing CRTs with time-to-event outcomes in the presence of a 

competing event. Briefly, the STRIDE study is a Patient-Centered Outcomes Research 

Institute and National Institute on Aging funded pragmatic, parallel CRT focusing on 

reducing serious fall injuries in community dwelling older adults at risk of falls. STRIDE 

tests the effectiveness of an evidence-based, multi-factorial, fallrelated injury prevention 

strategy compared to enhanced usual care. Between 2015 and 2017, the study enrolled 

5451 adults aged 70 years and older from 86 primary care practices. These practices 

were randomized to either intervention or control. While the primary outcome was time 

to first serious fall-related injury,8 participants could pass away before observing the primary 

outcome, leading to possible dependent censoring.

A recent systematic review indicated that CRTs with time-to-event or survival outcomes 

are not uncommon.9 There is also a growing statistical literature in designing CRTs 

with such outcomes.10–14 However, these articles have only addressed issues related to 

sample size and power calculations in the design stage and have not yet compared the 

operating characteristics of models used in the analysis stage. Besides, none of these 

articles have considered extensions to competing risks, and therefore the implications due 

to competing events in CRTs are not immediately clear. For the analysis of the STRIDE 

study, it was important to determine the best analytical approach to estimate the intervention 

effect while taking into account the competing event. This consideration motivated us to 

design a simulation study to identify an accessible and reliable analytical approach that 

maintains the nominal type I error rate and has the highest power to detect the treatment 

effect. Particularly, we vary the within-individual correlation (measuring the dependence 

between two latent event times of different causes for the same individual) and the between-

individual correlation (measuring the dependence between two latent event times of the 

Li et al. Page 2

Stat Methods Med Res. Author manuscript; available in PMC 2023 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



same cause for two different individuals in the same cluster) and assess their impact on 

type I error rate and power. The relationship between study power and intraclass correlations 

(including both within-individual correlation and between-individual correlation) can also 

help characterize the magnitude of variance inflation due to clustering, which is not available 

in closed forms in this complex setting but is indispensable for accurate sample size 

determination and study monitoring purposes.

There are two mainstream regression frameworks to analyze CRTs with time-to-event 

outcomes: frailty models which account for clustering via random effects (cluster-specific 

models) and marginal models that adjust for clustering via the robust sandwich variance 

estimator (population-averaged models)15–17 While each approach has its pros and cons, we 

focus on the marginal models for its straightforward population-averaged interpretation. The 

merits and limitations of the population-averaged approach have been discussed in detail 

by Preisser et al.18 in parallel CRTs and Li et al.19 in longitudinal CRTs. The marginal 

model separately specifies the marginal mean and working correlation structures, has a 

straightforward interpretation of the treatment effect parameter that does not depend on 

any unobserved variables, and has been shown to be robust to working correlation model 

misspecification.

The remainder of this article is organized as follows. In Section 2, we provide a brief 

overview of the survival models considered for the simulation study. Section 3 provides a 

description of the simulations and the methods to generate the complex clustered survival 

data. The simulation results are presented in Section 4. We provide an illustrative analysis 

of the STRIDE trial using these different analytical strategies in Section 5, and Section 6 

concludes with a discussion.

2. Statistical methods

2.1 Overview

In this section, we briefly review survival models for analyzing time-to-event outcomes. 

In the motivating STRIDE study, death is technically a semi-competing event because it 

is terminal (while the outcome of interest, fall-related injury, is non-terminal). However, 

because we are interested in the time to first event, we treat death as a competing risk 

throughout this study. We consider four categories of models (see Table 1 for a summary). 

These include methods that: (1) do not account for clustering and censor the competing 

event (Section 2.2); (2) account for clustering but censor the competing event (Section 

2.3); (3) account for the competing risk of death but do not account for clustering (Section 

2.4); and (4) account for both clustering and the competing risk of death (Section 2.5). 

As we focus on applications to CRTs, we primarily focus on methods (2) and (4), 

and consider methods (1) and (3) as reference approaches. These approaches can be 

implemented using readily available packages in R (https://cran.r-project.org/). A summary 

of the packages (although not comprehensive) is also provided in Table 1 and sample R code 

for implementing the models is in Web Appendix A. In Section 2.6, we additionally discuss 

methods to carrying out permutation tests for these models to generate more robust small-

sample inference in CRTs. R code for implementing the survival models and the permutation 

test is also available at the public GitHub Repository (https://github.com/kyleyxw/simCRTs).
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2.2 Cox model that does not account for clustering and censors the competing event

For analyzing time-to-event outcomes, the Cox proportional hazards model is the most 

basic regression model in that it does not account for clustering and censors any competing 

event. Since this method ignores the clustering structure, we only consider it as a reference 

approach in the simulations to quantify the amount of variance inflation due to intraclass 

correlations in CRTs. For notation purposes, here we use a single subscript i to denote each 

individual and define N as the total number of individuals in the study. Writing T i and Ci as 

the failure and censoring times, we define Xi = min T i, Ci  as the observed time to experience 

the event of interest and Δi = I T i ≤ Ci  as the censoring indicator. In the competing risks 

context, this approach estimates the cause-specific hazard for the event of interest, and 

therefore the censoring time Ci is defined as the earliest time to experience the competing 

event of death, loss to follow-up or the end of study (administrative censoring).

The Cox model specifies the hazard for individual i as

λi t ∣ Zi = λ0 t exp β′Zi (1)

where λ0 t  is an unspecified baseline hazard function and Zi is the p × 1 design vector. 

Frequently in CRTs, the design vector Zi includes only the treatment indicator p = 1 , 

and the exponentiated regression coefficient is interpreted as the population-averaged, cause-

specific hazard ratio (HRcs). HRcs corresponds to the relative instantaneous hazard rate due 

to treatment among any individuals who survive all events up to any given time t. Although 

it is a valid measure of the apparent treatment effect, HRcs does not necessarily translate 

into a measure of risk (defined by the cumulative incidence function), without assuming 

the independence between the competing events.20 Alternatively, Zi could include a list 

of pre-specified baseline covariates believed to affect the failure time, in which case the 

exponentiated coefficient corresponding to the treatment is interpreted as the adjusted HRcs.

The estimation of β model (1) proceeds by maximizing the partial likelihood, or 

equivalently, by solving the partial score equations defined as

U β =
i = 1

N
Δi Zi − s = 1

N Y s Xi exp β′Zs Zs

s = 1
N Y s Xi exp β′Zs

= 0 (2)

where Y i t = I Xi ≥ t  is the at-risk process. Because the implementation of this Cox 

model does not account for clustering, the variance estimator of β̂ is simply obtained 

from inverting the information matrix, Â β = − N−1∂U β / ∂β′. In other words, we can 

estimate the standard error (SE) of β̂ by taking the square root of the appropriate element 

in Â−1 β̂  and define the Wald statistic as β̂ /se β̂ . Under the null hypothesis of no treatment 

effect, the Wald statistic approximately follows a standard normal distribution. Whereas 

the above model-based variance estimator is consistent in the absence of clustering, it 

may underestimate the true variability of β̂ in the presence of clustering.17,16 On the one 

hand, this underestimation of the variability inflates the type I error rate and leads to 

incorrect conclusions about the treatment effect. On the other hand, the degree of variance 
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underestimation is directly associated with the degree of variance inflation in CRTs due to 

clustering, which is of interest for study planning purposes.

2.3 Marginal Cox model that accounts for clustering but censors the competing event

In CRTs, the marginal Cox model can be used to account for clustering through the use of 

the robust sandwich variance estimator.16,17 Suppose we have k = 1, …, K clusters, each with 

mk patients, then the total sample size is N = ∑k = 1
K mk. We now write Tkj and Ckj as the failure 

and censoring times for individual j in cluster k (here the censoring time is defined the exact 

same way as in Section 2.2). We define Xkj = min Tkj, Ckj  as the observed time to experience 

the event of interest and Δkj = I Tkj ≤ Ckj  as the censoring indicator. The marginal Cox 

model specifies the hazard as

λkj t ∣ Zkj = λ0 t exp β′Zkj , (3)

where λ0 t  is an unspecified baseline hazard and Zkj is a p × 1 design vector for individual j
in cluster k including the cluster-level treatment indicator. In fact, model (3) and model (1) 

are equivalent, except model (3) explicitly acknowledges the multilevel structure of the data 

with double subscripts. Importantly, the estimation of the marginal Cox model proceeds by 

solving the same partial score equation (2). Therefore, the point estimates are no different 

between model (3) and model (1) in CRTs and the interpretation of regression coefficients is 

the same between these two models (provided the same set of treatment and covariates are 

used).

Despite the identical point estimates, the variance of β̂ from the marginal Cox model 

is estimated by a robust sandwich estimator. The sandwich variance estimator has been 

studied extensively in generalized linear models and GEE with noncensored outcomes21 

and was extended to the marginal Cox model.16 The key idea is to regard the partial 

score equation (2) as an estimating equation with an independence working correlation 

matrix. Based on the theory of martingale estimating equations, Wei et al.16 and later 

Spiekerman and Lin22 proved that a valid variance estimator that properly accounts for 

clustering is V̂ β̂ = Â−1 β̂ B̂ β̂ Â−1 β̂ , where B̂ β̂  is an empirical covariance estimator of the 

cluster-specific partial score. By adjusting for clustering through B̂ β̂ , the sandwich variance 

estimator V̂ β̂  tends to be larger than the model-based variance estimator Â−1 β̂  and 

reduces the tendency for the Wald test to incorrectly reject the null. In Web Appendix B, we 

provide the explicit forms of Â β̂  and B̂ β̂  and explain how the sandwich variance estimator 

leads to robust inference in CRTs. Furthermore, as alluded to in Section 2.2, the differences 

between V̂ β̂  and Â−1 β̂  can be quantified by the variance inflation factor, which is often 

of interest for design and monitoring purposes. As in Section 2.2, the marginal Cox model 

also equates the competing event with censoring and therefore the exponentiated coefficient 

is interpreted as HRcs. This approach can create a violation of the fundamental assumption 

of independence between the time-to-event distribution and censoring distribution and run 

the risk of overestimating the cumulative incidence function.23 Nevertheless, we include 

this approach in our simulations because it’s a common method used in practice, and there 
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remains interest in assessing its robustness for analyzing CRTs, where, for instance, the 

competing event is possibly not dominant.

2.4 Models that do not account for clustering but address competing events

2.4.1 Fine and Gray model—The Fine and Gray model is a semi-parametric model 

that accounts for competing events by directly modeling the cumulative incidence function, 

or the so-called sub-distribution function.4 Here, we still maintain T i as the failure time, but 

additionally define εi ∈ 1, …, l  to be the causes of failure, where l ≥ 2 causes are assumed 

to be observable. The right censoring time due to loss to follow-up or end of study is now 

defined by Ci. Furthermore, Xi = min T i, Ci  is still the observed survival time. Unlike the 

Cox model in Section 2.2, the Fine and Gray model does not censor the competing event but 

instead considers the sub-distribution hazard function for the event of interest (cause ε = 1)

λsub t ∣ Z = lim
Δt 0

1
ΔtPr t ≤ T ≤ t + Δt, ε = 1 ∣ T ≥ t ∪ T ≤ t ∩ ε ≠ 1 , Z =

− dlog 1 − F t ∣ Z /dt,
(4)

where F t ∣ Z = P T ≤ t, ε = 1 = 1 − exp ∫0
t λsub s ∣ Z ds  is the (sub-distribution) 

cumulative incidence function.

The Fine and Gray model is written as

λi
sub  t ∣ Zi = λ0

sub  t exp γ′Zi , (5)

where λ0
sub  t  is an unspecified baseline sub-distribution hazard. Similar to Section 2.2, the 

design vector Zi could include only the treatment indicator, in which case the exponentiated 

regression coefficient corresponds to the sub-distribution hazard ratio (HRsub) due to the 

treatment. By the definition of (4), HRsub accounts for the competing risk by actively 

maintaining the individuals experiencing the competing event in the risk set at time t. It is 

an effect measure that is due to both the treatment effect on the event of interest and the 

potentially differential impact of the competing event on the risk set in the population.20 

Due to the direct correspondence between sub-distribution hazard and cumulative incidence 

function, HRsub directly translates into a measure of risk and describes the treatment effect 

on the cumulative incidence, which is considered as a major difference from HRcs.

To estimate γ, Fine and Gray4 modified the partial score equations of the Cox model. 

Let Ni t = I T i ≤ t, εi = 1  be the counting process for the event of interest and let 

Y i t = 1 − Ni t −  be the at-risk process; γ̂ is found by solving

Usub γ =
i = 1

N
I εi = 1 Zi − s = 1

N ws Xi Y s Xi Zsexp γ′ZS

s = 1
N ws Xi Y s Xi exp γ′ZS

wi Xi = 0, (6)

where wi t = I Ci ≥ min T i, t Ĝ t /Ĝ min Xi, t  is the time-dependent inverse probability of 

censoring weight, and Ĝ ⋅  is the Kaplan-Meier estimate of the survival function of the 
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censoring time. In addition, it is important to notice that Usub  γ  does not correspond to an 

actual likelihood, and therefore Fine and Gray provide a sandwich variance for inference 

and hypothesis testing. The sandwich variance estimator takes the form Ω̂−1Σ̂Ω̂−1
, where 

Ω−1 is the probability limit of the inverse of the partial derivative of Usub  γ  evaluated at 

the true parameter value γ0 and Σ is the asymptotic variance of N−1/2Usub  γ0 , Ω̂−1
 and Σ̂

are consistent estimators based on sample averages.4 The Wald normality-based test for 

H0:γ = 0 could be defined analogous to Section 2.2 once the variance of γ̂ is obtained from 

the sandwich variance estimator.

2.4.2 Multi-state model—The multi-state model is an alternative approach that 

addresses competing risks by formulating different transition intensities (hazards) to model 

the transitions between different states.24 If we generically denote T  as the time of reaching 

state ℎ from state q, the hazard rate for the transition from state ℎ to state q has the general 

form,

λℎq t = lim
Δt 0

P t ≤ T < t + Δt ∣ T ≥ t
Δt . (7)

Considering our context of the STRIDE trial, the multi-state model examined in this study 

becomes a unidirectional illness-death model (Figure 1),23 with the fall as a transient 
state and death as the absorbing state. Define the transition probabilities in this model 

by Pℎq r, t = P  (in state q at time t ∣in state h at time r) with r < t and ℎ, q ∈ 0,1, 2 , and 

state 0,1 , and 2 represent healthy, fall, and death, respectively. These transition probabilities 

can be written in explicit terms as in Putter et al.,23 which can be used for individual 

predictions. Assuming a Markov model with a clock-forward time scale, we consider the 

Cox proportional hazards model for each of the transition hazards separately. In STRIDE, 

we are primarily interested in the treatment effect on the transition hazard λ01 t , modeled by

λ01, i t ∣ Zi = λ01,0 t exp β′Zi , (8)

where Zi is the design vector defined previously. This specification leads to partial likelihood 

and score functions similar to equation (2) for the Cox model; the transition hazard ratio, 

exp β , bears a similar interpretation to HRcs as it is specific to the transition between the 

healthy and fall states. In the STRIDE trial, because the initial state for all participants is the 

healthy state, the transition-specific hazard ratio is indeed equal to HRcs. Finally, similar to 

Section 2.2, we consider the Fine and Gray and multi-state model without clustering only as 

a reference approach in our simulations to quantify the amount of variance inflation due to 

intraclass correlations in CRTs. The contrast between methods with and without clustering 

helps clarify when clustering matters for valid inference and can demonstrate the amount 

of required sample size inflation in CRTs with complex survival outcomes under various 

combinations of parameters.
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2.5 Models that account for clustering and address competing events

2.5.1 Marginal Fine and Gray model—The marginal Fine and Gray sub-distribution 

hazard model is an extension of the Fine and Gray model that properly reflects the 

multilevel structure of the data and accounts for clustering through a modified sandwich 

variance estimator.25 Similar to Section 2.3, we assume there are K clusters, each with 

cluster size mk. In addition to Tkj, Ckj, and Zkj, we define εkj ∈ 1, …, l  to be the causes of 

failure, where l ≥ 2 causes are assumed to be observable. The observed data then consist of 

Xkj = min Tkj, Ckj , I Tkj ≤ Ckj εkj, Zkj  and the marginal sub-distribution hazard model is

λkj
sub t ∣ Zkj = λ0

sub t exp γ′Zkj , (9)

where λ0
sub  t  is the unspecified baseline sub-distribution hazard. When Zkj only includes the 

intervention indicator, exp γ  is interpreted as the population-averaged HRsub. Zhou et al.25 

developed an estimating equations approach with an independence working assumption for 

estimating γ. In fact, the independence estimating equation reduces to equation (6) once 

we replace the two-level notations (subscripts , j) with the one-level notation (subscript i), 
and therefore the point estimate γ̂ is equal to that obtained from the Fine and Gray model. 

To properly account for clustering, Zhou et al.25 proposed a clustered sandwich variance 

estimator Ω̂−1Λ̂Ω̂−1
. While Ω̂−1

 is defined similarly as in Section 2.4.1, the matrix Λ̂ is 

the empirical covariance of the cluster-specific contribution to the estimating equations 

(rather than the variance estimate Σ̂ of the Fine and Gray model). With a sufficient number 

of clusters, the clustered sandwich variance estimator for γ̂ is consistent even though the 

independence working assumption is used. The Wald test for H0:γ = 0 can be obtained 

once γ̂ and its sandwich SE are computed, and the corresponding marginal cumulative 

incidence function can be obtained based on a Breslow-type estimator for λ0
sub  t . Analogous 

to the comparison between Cox and marginal Cox models, the comparison between Fine 

and Gray and marginal Fine and Gray model can shed light on the degree of variance 

inflation in CRTs due to clustering, which is of interest for study planning purposes when 

the primary analysis considers cumulative incidence regression. Finally, while Zhou et al.25 

have performed simulations to examine the performance of the clustered sandwich variance 

estimator with at least 100 clusters, most CRTs have much fewer than 100 clusters and the 

model performance with a smaller number of clusters is currently unclear.

2.5.2 Marginal multi-state model—We also consider the marginal multi-state 

model23, which is similar to the marginal Cox model presented in Section 2.3, that 

estimates the regression parameters using an independence working assumption adjusting 

for clustering via the clustered sandwich variance estimator. Since an independence working 

assumption is considered, the point estimate from the marginal multi-state model is same as 

that from the conventional multi-state model. The sandwich variance is obtained in a similar 

fashion as those described in Sections 2.3 and 2.5.1.

2.6 Permutation test

An important objective in analyzing CRTs is to make inference on the treatment effect 

parameter. While the normality-based Wald test in each of the above models may carry 
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the nominal size when there is a large number of clusters (say, 100), it may not guarantee 

adequate control of type I error rate when the number of clusters is small. Although the 

STRIDE study does not suffer from a limited number of clusters K = 86 , systematic 

reviews by Fiero et al.,26 Murray et al.,27 and Ivers et al.28 suggest that more than half of the 

published CRTs included no more than 30 clusters, therefore, considerations on improving 

the small-sample performance of the Wald test are particularly relevant.

For testing the null hypothesis of no treatment effect, an alternative to the Wald-test is 

a permutation test. Because of its robust control of type I error rate in small samples, 

the permutation test has received considerable attention in the analyses of CRTs with 

non-censored outcomes (see, e.g. Gail et al.29 and Li et al.30,31 with continuous and binary 

outcomes). Cai and Shen32 developed a non-parametric permutation test to compare the 

marginal survival functions; the test statistic was chosen to be the generalized linear rank 

and Renyi-type test statistics designed to detect the maximal deviation of survival functions 

across time. In addition, Wang and De Gruttola33 developed a permutation test where the 

test statistic was the weighted average of treatment effect estimates between all pairs of 

clusters. While both approaches demonstrated adequate control of type I error rate and 

power in CRTs, they have not examined the use of the permutation test in analyzing 

CRTs with competing risks. To examine whether the permutation test could improve the 

performance of the Wald-test (especially when the number of clusters do not exceed 30), we 

developed permutation tests corresponding to each model as follows.

Define D = X, ℰ, Ƶ  as the data matrix consisting of the collection of observed time-to-event 

outcomes X, ℰ  (where X is the set of all observed event times, and ℰ denotes the set 

of all observed causes) and the treatment assignment Ƶ. Typically, because K /2 clusters 

are randomized to each arm, there are S = K
K /2  possible permutations of the treatment 

labels. Define Ƶs as a permutation of Ƶ in the randomization space and Ƶ* as the realized 

randomization scheme in the trial. We can write D Ƶs = X, ℰ, Ƶs  as the data matrix 

under permutation of treatment Ƶs. Under the strong null hypothesis of no treatment effect 

(treatment has no effect on the hazard or sub-distribution hazard of any individual), one can 

show that the realized data matrix D Ƶ*  can be regarded as a randomly selected element 

from the set D = D Ƶs :s = 1, …, S  consisting of S permuted data matrices. We then define 

a test statistic T = T D , and it holds that the observed test statistic T* = T D Ƶ*  is a 

random sample from the permutation distribution T D Ƶs :D Ƶs ∈ D . As long as the 

number of permutations S is not unrealistically small, this test is guaranteed to maintain 

the nominal type I error rate under the strong null, even if there are a small number of 

clusters.29,30,33

To operationalize the permutation test for each model, we define two different test statistics. 

The permutation β-test uses the estimated treatment effect from a given model as the test 

statistic T, while the permutation z-test statistic is chosen to be the z-score, or the Wald-test 

statistic based on the sandwich variance estimate. For example, the following steps are 

required to implement a permutation test under the marginal Fine and Gray model:
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a. estimate the test statistic T*, either T* = γ̂ or T* = γ̂ / var γ̂ , from the observed 

data;

b. obtain the permutation distribution of T* by repeating step (a) with S ≤ S
randomly permuted, distinct data sets contained in D; the value of S is sometimes 

chosen for computational considerations;

c. reject the null hypothesis if T* lands in the rejection region of the discrete 

permutation distribution.

As an alternative to step (c), one could also estimate the permutation p-value as the 

proportion of the permuted test statistics that are equal or more extreme in absolute value 

than the observed test statistic, and compare with the nominal level. The permutation tests 

for the marginal Cox and multi-state models can be analogously implemented following the 

above three steps.

3 Simulation design

We conducted a series of simulations to evaluate the operating characteristics of the three 

types of methods with data generated to include a clustered survival outcome and competing 

event. Mimicking the structure of the STRIDE trial, we assumed a two-arm CRT with equal 

randomization. We considered three levels of total number of clusters K ∈ 10,30,100 . We 

used K = 100 to represent a sample size similar to STRIDE, and used K = 30 and K = 10
to represent a moderate and small numbers of clusters, conditions under which the robust 

sandwich variance estimator may inflate the type I error rate for testing the cluster-level 

intervention effect.34 Finally, to resemble the STRIDE study, the cluster sizes mk were 

sampled from the empirical distribution of the cluster sizes observed in the STRIDE study. 

The mean cluster size was 63 (ranges from 10 to 199) and the coefficient of variation was 

0.53 .

3.1 Data generation

The marginal survival function of the event time S1, kj follows a Uniform (0, 1) distribution, 

from which we generated S1, kj for each individual j in cluster k. The Gumbel copula 

function35 was then used to generate a second survival probability for the same individual, 

S2, kj, representative of the competing event (death) with the copula association parameter 

controlling for the correlation between the event time of interest and the competing event 

time. Under the Gumbel copula, there is a one-to-one mapping between the association 

parameter and Kendall’s tau τw ,36 which we varied to represent different levels of 

the within-individual correlation between the two (latent) event times. To induce the 

between-individual correlation τb, we considered a frailty Gk Gamma shape = a, rate = a
with a = 0.5 1/τb − 1 , and generated the latent event times

T 1, kj = −log S1, kj

λ1exp δZk Gk
, T 2, kj = −log S2, kj

λ2Gk
, (10)

where T1, kj is the latent time for the event of interest, T2, kj is the latent time for the competing 

event, λ1 and λ2 are the assumed constant baseline hazards (event rates) for these two 
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survival times, Zk is the cluster-level treatment, and exp δ  is the latent hazard ratio for 

T1, kj. Additional details on the data generating process are given in Web Appendix C. Web 

Appendix C also provides a derivation to show τb corresponds to the Kendall’s tau, or the 

between-individual correlation for two event times of the same cause. In our data generating 

process, we require τb to be strictly between 0 and 1 to ensure the frailty distribution is 

well-defined.

We simulated the censoring time Ckj (time to censoring for reasons other than death) from 

a uniform distribution with the assumed censoring rate. The comparison of these three 

latent event times determined the final status of each individual. When the observed time 

Xkj = min T1, kj, T2, kj, Ckj = Ckj, the individual was considered censored in the usual sense and 

εkj = 0. When Xkj = min T1, kj, T2, kj, Ckj = T2, kj, this individual was not censored in the usual 

sense, though the event time of interest was not observed since death happened earlier; 

in this case, εkj = 2. Finally, when Xkj = min T1, kj, T2, kj, Ckj = T1, kj, the event of interest was 

observed for this individual, and εkj = 1. For those individuals who experienced the event of 

interest, we assumed they could also be subject to the competing event or censoring even 

after time Xkj. For simplicity, we assumed that an individual had the same hazard for the 

competing event after experiencing the event of interest; that is, the survival function for the 

latent time T2, kj remained unaffected after conditioning on T2, kj ≥ Xkj = T1, kj . Based on the 

simulated observed event time and event status, we formatted the data in two forms: a long 

format considering the competing risks after the event (used for the multi-state model) and a 

wide format considering only the first event (used for the Cox and Fine and Gray models).

3.2 Parameter configurations

We varied key parameters in the above data generating process to represent a range of 

scenarios that resemble the STRIDE study. We fixed the baseline hazard rate λ1 = 0.08
and the dropout rate (used to specify the censoring distribution) at 0.03 . We varied the 

baseline hazard rate for death, λ2 ∈ 0.02,0.04,0.08,0.12 , representing scenarios in which a 

smaller to larger fraction of patients died before the event of interest could be observed. 

Because the clustering of event times plays an important role in the design and analysis of 

such trials, we varied the copula Kendall’s tau, τw ∈ 0.001,0.01,0.05,0.1,0.2,0.3,0.5 , and the 

frailty Kendall’s tau, τb ∈ 0.001,0.01,0.05,0.1,0.3 . In what follows, the copula Kendall’s tau 

is referred to as the within-individual correlation, and the frailty Kendall’s tau is referred 

to as the between-individual correlation. Under the null scenario, we set the latent hazard 

ratio exp δ = 1 (see equation (10) for definition of δ), and under the alternative, we used 

exp δ ∈ 0.5,0.8,2 . The value of 0.8 was the hypothesized effect size for designing the 

STRIDE study. We additionally included exp δ = 0.5 and 2 to evaluate whether the results 

are sensitive to the magnitude and direction of the effect size. In summary, our simulation 

used a factorial design consisting of four values of the latent hazard ratio, four levels of 

the baseline hazard rate for the competing event, five values of the between-individual 

correlation, seven values of the within-individual correlation, and three different number of 

clusters (sample sizes). In total, we have evaluated 4 × 4 × 5 × 7 × 3 = 1680 scenarios.
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For each scenario, we conducted 1000 simulations to investigate the performance of 

the three types of survival models (with clustered sandwich variance estimator) and the 

following performance metrics were considered: relative bias (RB) for estimating the 

treatment effect, calculated as the relative difference between the mean estimated coefficient 

and the true target parameter; SE ratio (SER), calculated as the ratio between the true Monte 

Carlo SE and the mean estimated SE; coverage probability (CP), calculated as the proportion 

of 95% confidence intervals for the treatment coefficient that contained the true value; 

empirical type I error rate, calculated as the proportion of tests that resulted in a rejection 

of the null hypothesis at the two-sided 5% level under the null; empirical power, calculated 

as the proportion of tests that resulted in a rejection of the null hypothesis at the two-sided 

5% level under the alternative. In addition, we also report the degree of variance inflation 

in CRTs with different levels of within-individual and between-individual correlations, by 

comparing the SE estimates with (methods in Sections 2.3 and 2.5) and without (methods 

in Sections 2.2 and 2.4) accounting for clustering under each type of model. We fixed 

K = 100 for this evaluation to avoid potential finite-sample bias of the SE estimates from the 

clustered survival models.

For studying type I error rate and power, in addition to the Wald test, we also implemented 

the permutation test when the number of clusters was relatively small K = 30 and K = 10 . 

Those were the cases in which the Wald test with the sandwich variance estimator 

is suspected to be anti-conservative. When K = 10, we enumerated the S = 10
5 = 252

permutations from the randomization space, and when K = 30, we randomly simulated 

S = 500 permutations from the randomization space of size S = 30
15 > 155 million with 

duplicates removed. This strategy was motivated by considerations of computational time.

Finally, whereas the evaluation of SER, type I error rate and power does not require the true 

treatment effect from each model, the evaluation of RB and CP requires such information. 

Under the null scenario δ = 0 , the treatment has no effect on the distribution of both T1, kj

and T2, kj conditional on the frailty, and therefore has no effect on the cause-specific hazard 

and cumulative incidence function for T1, kj. This implies that the null holds for both the 

Cox model and the Fine and Gray sub-distribution hazard model, or equivalently, the true 

β = γ = 0. Under the alternative, the true values for δ, β, and γ are not necessarily equal35; 

this is because δ represents the latent hazard ratio conditional on the frailty (latent with 

respect to the unobserved distribution of T1, kj conditional on the frailty but marginalized over 

T2, kj), whereas β and γ represent the population-averaged cause-specific and sub-distribution 

hazard ratio (population-averaged due to marginalizing over the cluster-specific frailty). To 

address this complexity, we defined the truth for β and γ as the probability limits under 

which the respective estimating equations have mean zero.37 We numerically approximated 

the true values of β and γ under our data generating process using additional Monte Carlo 

simulations with a large number of clusters. Specifically, we independently carried out 

simulations with K = 200 clusters and obtained the averages of the β̂ and γ̂ across the 1000 

simulations. The Monte Carlo SE of β̂ and γ̂ in this “truth simulation” is relatively minimal, 

confirming the accuracy of our approximation to the true treatment effect in each model.
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4 Results from the simulation study

4.1 Relative bias

Web Figure 1 summarizes the relative bias (RB) for estimating the treatment effect with 

the three marginal models under K = 100, exp δ = 0.8, and different values of the correlation 

parameters, τw and τb. All models have negligible bias for estimating their respective true 

treatment effect (either HRcs or HRsub). The RB for each model is similar and does not 

exceed 3% in the majority of cases. There is also no obvious systematic pattern to how the 

RB changes with different values of τw and τb. We also observe small RB when the true 

effect in the data generating process is changed to exp δ = 0.5 (Web Figure 2) or exp δ = 2
(Web Figure 3). As the true effect moves further away from the null, the RB for the effect 

measure in each model decreases. Finally, when the number of clusters decreases to K = 30
and K = 10, the RB generally increases, with the largest RB to be around 10% when the 

number of clusters K = 10 (see Web Figures 4 to 6 for K = 30 and Web Figures 7 to 9 for 

K = 10).

4.2 Standard error

We first focus on the three marginal models, and compute the SER, which is obtained as the 

ratio between Monte Carlo SE and the mean of the estimated SE; the former can be regarded 

as the true variability of the estimator under our data generating process. When the SE of 

the treatment effect is well estimated, the value of SER should be close to one. A value of 

SER that deviates from unity signals the approach is either over- or under-estimating the 

uncertainty of the treatment effect, leading to incorrect statistical inference. Web Figure 10 

summarizes the SER for estimating the treatment effect using the three marginal models 

coupled with their sandwich variance estimators under K = 100, exp δ = 0.8, and varying 

values of the correlation parameters. In general, the SER is close to 1 for all models across 

all values of τw and τb, confirming that the sandwich variance estimator is consistent with 

a sufficient number of clusters in CRTs. While results for K = 30 and alternative values 

of δ are largely similar (Web Figures 11 through 15), the results for K = 10 suggests 

important caveats for the sandwich variance estimators for all models. Specifically, Web 

Figures 16 through 18 indicate the mean estimated sandwich standard error has noticeable 

negative bias (SER ≈ 1.4, which suggests that the SE was over-estimated by 40%) when 

K = 10 and between-individual correlation τb ≥ 0.05. The negative bias also increases as the 

between-individual correlation increases but remains insensitive to τw.

Because the clustered robust sandwich variance estimates are accurate with K = 100, we 

further approximate the values of the design effect or variance inflation factor (VIF) by 

taking the ratio between the clustered robust sandwich variance and the variance ignoring 

clustering (reference approaches in Sections 2.2 and 2.4). Unlike in simpler cases with 

continuous and binary outcomes, a closed-form VIF is intractable with complex clustered 

survival outcomes, presenting a major challenge for designing CRTs in our setting. For this 

reason, we provide some intuitions on the magnitude of the VIF in our simulation study 

under K = 100 for each sets of models: marginal Cox versus Cox; marginal Fine and Gray 

with clustering versus Fine and Gray; marginal multi-state versus multi-state. The results are 
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presented in Table 2 under a fixed within-individual correlation τw = 0.05  but with varying 

between-individual correlations τb and competing event rates. Above all, Table 2 confirms 

that increasing the between-individual correlation has a pronounced effect on the VIF, and 

a larger competing event rate reduces the VIF only when the between-individual correlation 

is large (e.g. τb = 0.3). Second, whereas in most cases the differences in VIF among the 

three types of models are small, the sub-distribution hazard model (Fine and Gray type 

model) has the smallest VIF when both the between-individual correlation and competing 

event rate become large. Third, the VIF in CRTs with complex survival outcomes is clearly 

no longer a linear function in the between-individual correlation τb, which discourages the 

direct application of the well-known VIF results from continuous and binary outcomes in 

designing survival CRTs. Finally, Web Tables 1 through 6 present the VIF values with 

smaller and larger within-individual correlations, τw. Interestingly, while the VIF remains 

insensitive to τw when τw ≤ 0.1, larger values of the within-individual correlation can also 

reduce the VIF when the competing event rate is large. Overall, these findings imply that 

VIF in CRTs with complex survival outcomes is driven by both the within-individual and 

between-individual correlations as well as the competing event rate in a non-linear fashion.

4.3 Type I error rate

Figure 2 summarizes the empirical type I error rate of the Wald z-tests when K = 100 with 

varying values of the correlations and competing event rates. Based on the margin of error 

with 1000 replicates from a binomial model and the nominal test size at 5%, we consider 

an empirical type I error rate between 3.6% and 6.4% to be acceptable, and indicate the 

acceptable bounds in the respective figures. For brevity, we refer to the Wald tests with the 

clustered sandwich variance estimators as clustered Wald tests. Figure 2 shows that with a 

sufficient number of clusters, all clustered Wald tests maintain close-to-nominal type I error 

rate under all combinations of correlation values and competing event rates; the empirical 

type I error rate only occasionally exceeds 6.4% (mostly in the extreme scenario when 

τb = 0.3). In contrast, the non-clustered Wald tests consistently exhibit a substantially inflated 

in type I error as long as τb ≥ 0.05 (results not shown), confirming the necessity for the 

variance estimator to account for clustering in CRTs with complex survival outcomes.

Web Figures 19 and 20 present the simulation results for type I error rates with a smaller 

number of clusters K = 30 and = 10). In contrast to Figure 2, the clustered Wald-test grows 

slightly anti-conservative when K = 30, but markedly so when K = 10. For example, the 

largest type I error rate of the clustered Wald-test for each model could be over 8% when 

K = 30 but can even reach 15% when K = 10, as a consequence of the negative bias in 

the sandwich variance estimator. This finding is consistent to previous findings with GEE 

analyses of non-censored outcomes in CRTs,38 except that the type I error inflation with 

complex survival outcomes appears much more pronounced than that with non-censored 

outcomes.

To mitigate the concerns with the type I error rate inflation with a smaller number of 

clusters, we examined the two permutation tests introduced in Section 2.6 for each of 

the three marginal models. Web Figures 21 and 22 present the type I error rate for the 

permutation tests when K = 30 and K = 10. For permutation tests in Figure 3 and Web 
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Figure 22, we exclude the extreme scenario with the largest between-individual correlation 

parameter τb = 0.3  when there are only K = 10 clusters, because fitting the marginal survival 

models and sandwich variance estimators repeatedly over permuted treatments leads to 

frequent non-convergence. From the results, it is evident that the permutation tests had 

satisfactory control of the test size at the nominal level, regardless of the correlation values 

or the competing event rate. Additionally, there is a little difference between the permutation 

β-test and the permutation z-test in terms of type I error. To facilitate a direct comparison, 

Web Figure 23 and Figure 3 present the type I error rate for the permutation β-test and 

the clustered Wald test under each of the three models, when K = 30 and K = 10. No clear 

pattern of type I error is shown as the simulation parameters, such as correlations and 

competing event rates, vary for the permutation β-test. Under most circumstances, the type 

I error for the permutation β-test lies randomly around 0.05, or below 0.05. For the Wald 

test, the type I error raises to around 0.1 when K = 30 and to 0.15 when K = 10, which is a 

serious issue threatening the validity of inference.

4.4 Statistical power

In parallel to Section 4.3, we consider the statistical power of each test from the marginal 

survival models. Figure 4 summarizes the statistical power for each model when K = 100
and exp δ = 0.8 under varying values of the correlation parameters and competing event 

rates. As the between-individual correlation τb increases, the power for all models, as 

expected, markedly decreases. However, for a given τb, it appears that larger values of the 

within-individual correlation τw translate to slight increases in the power of each test. The 

impact of τw on power is more pronounced with a larger competing event rate (0.12), but 

becomes negligible when the competing event rate is small (0.02).

Web Figures 24 and 25 summarize the corresponding results with K = 100 but with larger 

absolute effect sizes, that is, exp δ = 0.5 and 2. When the true treatment effect further 

deviates from the null, we observe that the marginal Fine and Gray model tends to have 

higher power compared to the marginal Cox and marginal multi-state models. For example, 

when exp δ = 2 (Web Figure 25), the between-individual correlation and competing event 

rate are both large, the marginal Fine and Gray model could have over 5% greater power 

than the marginal Cox and marginal multi-state models.

Web Figures 26 through 31 present the power for testing the treatment effect under 

each of the models considered with K = 30 and K = 10 clusters, and three effect sizes 

exp δ = 0.5,0.8,2 . With a smaller number of clusters, the power of the three Wald tests 

becomes more similar. The power comparison for these Wald tests, however, may be 

cautioned with K = 30 and K = 10 since the clustered Wald tests often carry inflated type 

I error rates. In this small-sample scenario, we also compare the power of the permutation 

tests since they have been demonstrated to maintain the nominal type I error rate. We 

summarize the empirical power for the permutation β-test and the permutation z-test in Web 

Figures 32 and 33 when K = 30 and K = 10, exp δ = 0.5, event rate = 0.08 and dropout 

rate = 0.03. The two types of permutation tests have negligible differences in power, and 

they appear only slightly less powerful compared with the clustered Wald tests. This may 
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be because that the sandwich variance estimator tends to have a negative bias with a 

small number of clusters, and more frequently rejects the null. Overall, when using the 

permutation tests with K = 30 and K = 10, the power difference across the three models is 

small, although occasionally the permutation tests based on the marginal Fine and Gray 

model have a slightly higher power.

4.5 Coverage probability

Web Figure 34 summarizes the coverage probability of the 95% confidence interval 

(CI) estimator from each of the models when exp δ = 0.8 and K = 100. The CIs are 

all constructed based on the normality assumption and the clustered sandwich variance 

estimator (results based on the non-clustered variance estimator not shown). Overall, the CIs 

from all marginal survival models maintain nominal coverage across all scenarios. Results 

for larger effect sizes are qualitatively similar and are presented in Web Figures 35 and 36.

In Web Figures 37 through 42, we summarize the results for coverage probabilities with 

K = 30 and K = 10. While the comparison between CIs based on the non-clustered and 

clustered sandwich variances for K = 30 and K = 10 are qualitatively similar to that for 

K = 100, one notable difference is that the clustered CI from each model tends to have 

undercoverage with a smaller number of clusters.39 As we alluded to in Section 4.3, this 

is because the sandwich variance tends to underestimate the true variance with a limited 

number of clusters.34 A potential remedy is to invert the permutation test described in 

Section 2.6. However, the inversion necessitates an exhaustive search of null hypotheses 

which the permutation test does not reject and will require substantially more computational 

effort than implementing a permutation test. We do not pursue this work here and return to a 

discussion in Section 6.

5 Illustrative analysis of the STRIDE trial

As described in Section 1, the STRIDE study was a pragmatic, parallel CRT focusing on 

reducing serious fall injuries in community-dwelling older adults at risk of falls.7,6 The 

study enrolled 5451 adults aged 70 years and older from 86 primary care practices. The 

primary outcome was the time from enrollment to first serious fall-related injury,8 and 

participants could die before observing the primary outcome. Because we are interested in 

the time to first event, death is considered as a competing risk. The event rates (first serious 

fall-related injury) among the control and intervention primary care practices were observed 

to be 5.3 and 4.9 per 100 person-years of follow-up, respectively, while the observed 

competing event rate (death) was smaller, 3.3 per 100 person-years of follow-up in both 

intervention and control practices.6 Participants withdrew consent at a rate of 3.6 per 100 

person-years of follow-up,40 and 4187 participants (76.8%) were administratively censored.

The actual STRIDE study was designed using covariate-constrained randomization41,42,30,31 

to assign practices to treatment arms, and the primary analysis was specified to adjust for 

baseline covariates that are balanced in the design stage,7,6 For demonstration, however, 

and in keeping with the preceding simulations, here we provide an unadjusted analysis that 

includes only the intervention effect. We considered the Cox model, the Fine and Gray 

model, and the multi-state model, with standard errors estimated either by the information 
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matrix or the robust sandwich variance estimator. The comparison between the two types of 

variance estimators can help assess the implication of clustering in STRIDE. The results are 

summarized in Table 3. Although the intervention effect parameters in the Cox, multi-state 

Cox, and Fine and Gray models have different interpretations (e.g. HRcs vs. HRsub), the 

estimated intervention coefficients in the STRIDE example are similar across three types of 

models, as a result of low event rate and competing event rate. Furthermore, accounting for 

clustering in each model through the sandwich variance estimator has minimal impact on the 

standard error estimates. This signals that intraclass correlations (both the within-individual 

and between-individual correlations) may be minimal for the survival times in each primary 

care practice. Indeed, when the intraclass correlation is minimal and the competing event 

rate is small compared to the event rate of interest, our simulation results show that all 

the models produce similar results. Although the STRIDE trial recruited a large number 

of clusters which alleviates the small sample considerations as in our simulation study, 

we additionally implement the permutation β-test and the permutation z-test with 10,000 

permutations, both of which produce similar p-values to the corresponding Wald tests. For 

illustrative purposes, we interpret statistical significance at the 0.05 level and find that the 

intervention does not have a statistically significant effect on the risk of fall-related injuries 

among the STRIDE trial population. We do acknowledge, however, that the interpretation 

of the study results should not only rely on a single dichotomy of a p-value at the 0.05 

threshold.

Beyond the overall analysis, we additionally performed subgroup analyses based on two 

potential effect modifiers—age (70–79 years vs. ≥ 80 years) and fear of falling only (yes vs. 

no; the participant had a negative response to all the fall-related screening questions except 

the question about whether he or she had a fear of falling). Due to the low event rate and 

death rate, we also observe little difference among the three models in subgroup analyses 

(Web Tables 7 to 10). Although our analysis of the STRIDE trial shows little difference 

among the three survival models as well as between the non-clustered and sandwich 

variance estimates, this example may not always reflect the usual case when both the 

event rates and intra-class correlations are higher. In those cases, our preceding simulations 

indicate that the sandwich variance estimator is required to maintain valid inference and the 

three survival models can produce different results.

6 Discussion

Motivated by the STRIDE trial, we provided an empirical comparison among analytical 

methods for CRTs with time-to-event outcomes in the presence of competing risks. We 

focus on readily implementable population-averaged survival models, and through extensive 

simulations (although not exhaustive), we study their operating characteristics for estimating 

their respective treatment effect parameters. Our results demonstrate that (i) all methods 

show trivial bias under all combinations of parameters in CRTs; (ii) the clustered sandwich 

variance estimators for all models are accurate with K = 100 clusters, but have negative bias 

with K = 30 and K = 10 clusters, resulting in inflated type I error rates and undercoverage; 

(iii) the permutation test has more robust control of type I error rates with small samples; 

(iv) under the alternative, while a larger value of the between-individual correlation reduces 
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the empirical power, a larger value of the within-individual correlation could slightly 

improve the power; (v) the three types of models have similar power in most cases, likely 

due to the low baseline event rate we assumed in the data generating process (to resemble 

the STRIDE trial). However, the marginal Fine and Gray model can have higher power than 

the other two marginal models, especially when the effect size is large, between-individual 

correlation is large and the within-individual correlation is small.

Although our study is motivated by the analysis of CRTs, it also has potential to inform 

the design of CRTs, particularly in terms of sample size estimation. To demonstrate the 

implications on the design of CRTs due to both clustering of survival outcomes and 

competing risks, we provided values of the VIF in our simulations and summarized them 

in Table 2. We found that for a given total sample size, VIF can depend on the between-

individual correlation, within-individual correlation as well as the competing event rate in a 

nonlinear fashion. Importantly, this indicates that the usual VIF obtained for non-censored 

continuous or binary outcomes does not apply anymore to censored survival outcomes 

with competing risks. For accurately designing CRTs with survival outcomes subject to 

competing risks, our simulation routine exemplifies a simulation-based power calculation 

procedure, for each of the models we considered. Of note, there is a body of literature 

advocating simulation-based power calculation as a powerful and flexible approach in 

complex scenarios where the closedform sample size or VIF is unavailable.43 To facilitate 

the design of complex CRTs, we provide our simulation code on the GitHub Repository 

(https://github.com/kyleyxw/simCRTs) so that others could adapt our code as a tool for 

simulation-based power calculation in CRTs.

In our simulation design, we used the Kendall’s tau as a rank correlation to represent the 

degree of clustering.44 While the Kendall’s tau is a common measure of association for 

analyzing clustered survival data, it remains less familiar to investigators working with 

CRTs. This may be partly because the concept of intraclass correlation coefficient (ICC) 

as a linear correlation has now become a standard measure of clustering in CRTs with 

non-survival outcomes,2 and relatively few published CRTs focused on survival outcomes. 

In fact, despite previous attempts that formalize the definition of ICC with clustered survival 

data,44,11,45,46,12 there has not yet been a consensus on which of these definitions should 

be recommended for best practice.47 Additionally, these definitions were currently restricted 

to clustered survival outcomes without competing risks, and future research is needed to 

provide such an extension and to better elucidate the pros and cons of alternative correlation 

measures in CRTs.

While accounting for clustering through the sandwich variance estimator is recommended 

in CRTs for each of the models we considered, the validity of the sandwich variance 

estimator only holds with a large number of clusters. With a limited number of clusters 

such as K = 30 and K = 10, our simulations show that the sandwich variance estimator has 

negative bias, leading to inflated type I error rate as large as 15% in certain scenarios. This 

is somewhat expected from prior studies which indicate the inadequacy of the sandwich 

variance estimator in CRTs with non-censored outcomes.38 Of note, an alternative approach 

to summarize the power results in our simulations with small samples is to derive the 

size-adjusted power for each test through the receiver operating characteristic curves.48,49 
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However, we do not pursue this approach here because our objective is to identify tests 

that already maintain the nominal size with standard software implementation. On the other 

hand, prior simulation studies in parallel, crossover and stepped-wedge CRTs have found 

that the bias-corrected sandwich variance estimators may improve the validity of inference 

in CRTs.19,50,51 While Fay and Graubard34 suggested a bias correction to the marginal Cox 

model, we are not aware of any existing software packages that implement this method, 

nor any extensions to the marginal Fine and Gray or multi-state models. As a solution, 

we considered the permutation test as a flexible alternative that adequately controls the 

type I error rates in small CRTs. Although we have not studied the permutation-based 

CI estimators due to computational challenges in inverting the test, it remains important 

future work to develop computationally efficient approaches to invert the permutation test 

accounting for competing risks.

A possible limitation of our study is that we focused on the marginal model carrying a 

population-averaged interpretation. Frailty models, as an alternative, were not considered 

in this work because of their non-convergence issues in small samples and the cluster-

specific interpretation of the treatment effect parameter. However, frailty models may 

have an efficiency advantage because the estimation of the conditional treatment effect 

parameter naturally accounts for the intraclass correlations through marginalizing the frailty 

distributions. A second limitation is that we have mainly considered scenarios with a 

competing event rate similar to the STRIDE trial, and we have not considered unequal 

competing event rates by treatment groups. The simulation results, therefore, may not be 

generalizable to more extreme settings where the competing event dominates the event 

of interest, or the competing event is affected by treatment. A third limitation is that we 

have not considered the possible recurrence of our target event (fall-related injury) in the 

simulations, and have not addressed the death event as a semi-competing risk.52 This may 

be one of the reasons why the multi-state models performs similarly to the Cox models, as 

we are merely interested in the time to first event. In more general settings, the multi-state 

model can be more suitable to complex survival data with transitions to more than two 

states.23

Finally, we have not addressed the challenges in estimating the intraclass correlation 

parameters in the current simulations, and assumed working independence following the 

standard implementations in common software packages. While the correlation parameters 

have been traditionally regarded as nuisance parameters, it is especially important to report 

such values in analyzing CRTs because they are likely to inform the sample size calculation 

of future CRTs with similar endpoints.53 Therefore, it would be of great interest to develop 

and compare methods for estimating the correlation parameters, which we demonstrate to be 

key determinants of the VIF in CRTs with complex survival outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure I. 
A schematic illustration of the unidirectional illness–death model in the context of the 

STRIDE study.
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Figure 2. 
Type I error rate with varying competing event rates (0.02–0.12) under different 

combinations of within-individual correlation τw  and between-individual correlation τb ; 

the number of clusters K = 100 event rate = 0.08 and dropout rate = 0.03. Empirical type 

I error rates between 3.6% and 6.4% (indicated by horizontal dashed lines) are considered 

close to nominal based on a binomial model with 1000 replicates.
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Figure 3. 
Direct comparison of type I error rate between the permutation β-test and the sandwich 

variance based Wald test with varying death rates (0.02–0.12) under different combinations 

of within individual correlation τw  and between individual correlation τb ; the number 

of clusters K = 10, event rate = 0.08 and dropout rate = 0.03. Empirical type I error rates 

between 3.6% and 6.4% (indicated by horizontal dashed lines) are considered close to 

nominal based on a binomial model with 1000 replicates. The scenario τb = 0.3 is excluded 

due to non-convergence.
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Figure 4. 
Power with varying competing event rates (0.02–0.12) under different combinations of 

within-individual correlation τw  and between-individual correlation τb ; the number of 

clusters K = 100, latent hazard ratio = 0.8, event rate = 0.08, and dropout rate = 0.03.
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Table I.

Survival models under consideration and their implementations in existing R packages. Cox and marginal Cox 

models estimate the cause-specific hazard ratio; Fine and Gray and marginal Fine and Gray models estimate 

the sub-distribution hazard ratio; multi-state and marginal multi-state models estimate the transition-specific 

hazard ratio.

Censor competing 
event

Account for 
clustering Model Package Function call

Yes No Cox survival coxph

Yes Marginal Cox survival coxph with cluster argument

No No Fine and Gray comprsk crr

Multi-state Cox survival coxph with as.factor(status) specification and id 
argument

Yes Marginal Fine and Gray crrSC crrc with cluster argument

Marginal multi-state Cox survival coxph with as.factor(status) specification, id and 
cluster arguments
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Table 2.

Variance inflation with K = 100, varying competing event rates (from 0.02 to 0.12 ), and between-individual 

correlations τb from 0.00I to 0.3) when the within-individual correlation is at a fixed level τw = 0.05 . Variance 

inflation is calculated as the ratio of SER between the model accounting for clustering and the model that does 

not account for clustering. Cox: ratio of SER between marginal Cox and traditional Cox; Fine and Gray: ratio 

of SER between marginal Fine and Gray and traditional Fine and Gray; Multi-state: ratio of SER between 

marginal multi-state and traditional multi-state.

Competing event rate

Model τb 0.02 0.04 0.08 0.12

Cox 0.001 1.013 1.012 1.004 1.028

0.01 1.325 1.344 1.342 1.320

0.05 2.175 2.135 2.045 1.962

0.1 3.873 3.741 3.505 3.280

0.3 10.045 9.409 8.369 7.647

Fine and Gray 0.001 1.008 1.004 0.999 1.013

0.01 1.313 1.313 1.291 1.247

0.05 2.102 1.998 1.801 1.643

0.1 3.711 3.428 2.962 2.573

0.3 9.559 8.517 6.910 5.841

Multi-state 0.001 1.013 1.012 1.005 1.028

0.01 1.326 1.344 1.343 1.321

0.05 2.176 2.136 2.046 1.963

0.1 3.874 3.742 3.507 3.282

0.3 10.050 9.414 8.374 7.651
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Table 3.

Analyses of STRIDE trial using: Cox with (marginal Cox) and without (Cox) clustering; Fine and Gray with 

(marginal Fine and Gray) and without (Fine and Gray) clustering; Multi-state with (marginal multi-state) and 

without (multi-state) clustering. The HR column refers to the cause-specific HR for the Cox and multi-state 

models, while the HR column refers to the sub-distribution HR for the Fine and Gray models.

Model Intervention coefficient Standard error HR 95% Wald CI

p-value

Wald perm β perm z
Cox −0.0936 0.0822 0.9106 (0.7751, 1.0698) 0.255 – –

Marginal Cox −0.0936 0.0821 0.9106 (0.7753, 1.0696) 0.254 0.270 0.262

Fine and Gray −0.0932 0.0822 0.9110 (0.7755, 1.0702) 0.257 – –

Marginal Fine and Gray −0.0932 0.0821 0.9110 (0.7757, 1.0700) 0.256 0.268 0.262

Multi-state Cox −0.0909 0.0822 0.9131 (0.7773, 1.0727) 0.269 – –

Marginal multi-state Cox −0.0909 0.0826 0.9131 (0.7767, 1.0735) 0.271 0.287 0.276
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