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Summary
Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions in lipidmetabolism. Large-scale whole-genome

sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess more associations be-

tween rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 par-

ticipants of diverse ancestries with measurement of blood lipids and lipoproteins (LDL-C, HDL-C, TC, and TG) in the National Heart,

Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid

variability.We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare-variant aggregate

association tests using the STAAR (variant-set test for association using annotation information) framework. We performed STAAR con-

ditional analysis adjusting for common variants in known lipid GWAS loci and rare-coding variants in nearby protein-coding genes. Our

analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid

GWAS loci (in a5500-kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were condi-

tionally independent of common regulatory variation and rare protein-coding variation at the same loci. We replicated 34 out of 61

(56%) conditionally independent associations using the independent UK BiobankWGS data. Our results expand the genetic architecture

of blood lipids to rare variants in lncRNAs.
Introduction

Blood lipid levels, including low-density lipoprotein

cholesterol (LDL-C), total cholesterol (TC), triglyceride

(TG), and high-density lipoprotein cholesterol (HDL-C),

are quantitative clinically important traits with well-

described monogenic and polygenic bases.1–19 Abnormal

blood lipid levels contribute to risk of coronary heart dis-

ease (CHD), and in clinical practice, several treatments,
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including statins and PCSK9 and ANGPTL3 inhibitors,20–22

are available to reduce the risk of developing CHD. Each of

these therapeutics has supporting evidence of their efficacy

from human genetic analysis of blood lipid levels.20–23

Long non-coding RNAs (lncRNAs) are broadly defined

as transcripts greater than 200 nucleotides (nt) in length

that biochemically resemble mRNAs but do not code for

proteins.24 Compared with protein-coding genes, lncRNAs

show lower andmore tissue-specific expression.25 lncRNAs
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are known to perform important regulatory functions in

lipid metabolism.26–28 For example, lncRNA APOA1-AS

can inhibit the transcription of the APO gene cluster that

codes for protein components of lipoproteins29; lncRNA

LeXis can facilitate interaction between the liver X receptor

(LXR) and sterol regulatory element-binding protein tran-

scription factors to regulate hepatic sterol content and

serum cholesterol levels.30 Rare variants in lncRNAs have

not been systematically explored for their impact on blood

lipid levels. In addition, there are difficulties in defining

testing units and selecting qualifying variants.31 Rapidly

growing knowledge about the regulatory elements of

the non-coding genome,32–37 large-scale whole-genome

sequencing (WGS) studies,38–40 and new statistical

methods41–43 for variant set tests provide the possibility

to assess the associations between blood lipid traits and

the genome-wide impact of lncRNAs.

We examined the associations of rare variants in lncRNAs

fromhigh-coverageWGSof66,329participants fromdiverse

ancestrywhohaveblood lipid traits (LDL-C,HDL-C, TC, and

TG) in theNationalHeart, Lung, andBlood Institute (NHLBI)

Trans-omics for Precision Medicine (TOPMed) program

freeze 8 data.38 We show that the rare noncoding variants

in lncRNA genes located near genes associated with Mende-

lian dyslipidemia disorders contribute to phenotypic varia-

tion in lipid levels amongunselected individuals frompopu-
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lation-based studies independently of common variants

associated with blood lipid levels.

Material and methods

Overview
We performed a comprehensive evaluation of the association be-

tween quantitative blood lipid traits and rare variants in lncRNA

genes across the genome (Figure 1). We systematically curated

more than 165,000 lncRNA genes from the union of four human

genome lncRNA annotations, including GENCODE,25,32,33

FANTOM5 CAT,34 NONCODE,35 and lncRNAKB.36 We utilized

the TOPMed freeze 8 dataset of 66,329 participants from 21 studies

withWGS andmeasured blood lipid levels and performed the rare-

variant (minor allele frequency [MAF] <1%) association tests of

curated lncRNA genes with four blood lipid phenotypes: LDL-C,

HDL-C, TC, and TG. We further conducted conditional analysis

adjusting for known genome-wide association study (GWAS)

variants from the Global Lipids Genetics Consortium (GLGC).18

Associations between lncRNA genes and lipids that were condi-

tionally independent from the GWAS variants (conditional p

value < 6.0 3 10�04) were then tested using the variant-set test

for association using annotation information (STAAR) procedure

for conditional analysis adjusting for rare nonsynonymous vari-

ants (MAF <1%) within the closest protein-coding gene to each

lncRNA gene as well as the nearby genes associated with Mende-

lian lipid disorders. We further performed replication in

�140,000 genomes from UK Biobank (UKB).44 We intersected
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Figure 1. A schematic illustration of the study
Weperformed the rare-variant association tests of 165,000 curated lncRNA genes with lipid phenotypes (i.e., LDL-C, HDL-C, TC, and TG)
using the TOPMed freeze 8 data. A total of 66,329 participants from 21 studies withWGS andmeasured blood lipid levels were analyzed
using STAAR framework. We further conducted a series of conditional analyses adjusting for known lipid GWAS variants and the nearby
protein-coding genes (rare nonsynonymous, rare synonymous, and rare pLoF variants, separately). We replicated the results using an
independent UKB WGS cohort. Finally, gene expression levels of the significantly lipid-associated lncRNAs were investigated in FHS
RNA-seq data. TOPMed, Trans-Omics for Precision Medicine; UKB, UK Biobank; FHS, Framingham Heart Study; GLGC, Global Lipids
Genetics Consortium; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol;
TG, triglycerides; lncRNA, long non-coding RNA; GWAS, genome wide association study; STAAR, variant-set test for association using
annotation information; pLoF, predicted loss-of-function; MAF, minor allele frequency; SNVs, single-nucleotide variants.
our results with the gene expression signatures of lipid traits in

1,505 participants from the Framingham Heart Study (FHS)45

with RNA sequencing (RNA-seq) data and blood lipid levels and

observed evidence that the lncRNA rare variants may both influ-

ence their gene expression levels and impact lipid traits.
Discovery and replication cohorts
Discovery cohorts

The discovery cohort included 66,329 participants in the NHLBI

TOPMed from 21 cohort studies with freeze 8WGS and blood lipid

levels available: Old Order Amish (Amish; n ¼ 1,083), Atheroscle-

rosis Risk in Communities study (ARIC; n ¼ 8,016), Mt. Sinai

BioMe Biobank (BioMe; n¼ 9,848), Coronary Artery Risk Develop-

ment in Young Adults (CARDIA; n ¼ 3,056), Cleveland Family

Study (CFS; n ¼ 579), Cardiovascular Health Study (CHS; n ¼
3,456), Diabetes Heart Study (DHS; n ¼ 365), FHS (n ¼ 3,992),

Genetic Studies of Atherosclerosis Risk (GeneSTAR; n¼ 1,757), Ge-

netic Epidemiology Network of Arteriopathy (GENOA; n¼ 1,046),

Genetic Epidemiology Network of Salt Sensitivity (GenSalt; n ¼
1,772), Genetics of Lipid-Lowering Drugs and Diet Network
1706 The American Journal of Human Genetics 110, 1704–1717, Oct
(GOLDN; n ¼ 926), Hispanic Community Health Study - Study

of Latinos (HCHS-SOL; n ¼ 7,714), Hypertension Genetic

Epidemiology Network and Genetic Epidemiology Network of

Arteriopathy (HyperGEN; n ¼ 1,853), Jackson Heart Study (JHS;

n ¼ 2,847), Multi-Ethnic Study of Atherosclerosis (MESA; n ¼
5,290), Massachusetts General Hospital Atrial Fibrillation Study

(MGH_AF; n ¼ 683), San Antonio Family Study (SAFS; n ¼ 619),

Samoan Adiposity Study (Samoan; n ¼ 1,182), Taiwan Study of

Hypertension using Rare Variants (THRV; n ¼ 1,982), and

Women’s Health Initiative (WHI; n ¼ 8,263). The discovery co-

horts consisted of 29,502 (44.5%) White individuals, 16,983

(25.6%) Black individuals, 13,943 (21.0%) Hispanic individuals,

4,719 (7.1%) Asian individuals, and 1,182 (1.8%) Samoan individ-

uals. More information for study descriptions can be found in the

supplemental notes and Table S1.

Replication cohorts

The UKB is a large, population-based prospective cohort of half

a million United Kingdom residents aged 40–69 years that were

recruited between 2006 and 2010.46 Consent was previously ob-

tained from each participant regarding storage of biological speci-

mens, genetic sequencing, access to all available electronic health
ober 5, 2023



record (EHR) data, and permission to recontact for future studies.

All UKB participants gave written informed consent per UKB

primary protocol. The UKB WGS data consist of whole genomes

of 150,119 UKB participants with an average coverage of

32.53.44 We used joint-called variant call formats (VCFs) from

GraphTyper, which consist of 710,913,648 variants. We sought

to replicate the findings using the UKB WGS data for 139,849 ge-

nomes with blood lipid traits available, including 116,335 White

individuals, 23,335 non-White individuals, and 179 individuals

missing reported ancestry (Table S2). We used VCFs provided on

the UKB and conducted all the analysis in UKB Research Analysis

Platform (UKB RAP).

Ethical regulations

The overall study was approved by the institutional review board

(IRB) of the Boston University Medical Center. Individual studies

were approved by the appropriate IRBs, and informed consent

was obtained from all participants. All UKB participants gave writ-

ten informed consent per the UKB primary protocol. Secondary

use of the UKB data was approved by the Massachusetts General

Hospital IRB (protocol 2021P002228) and was facilitated through

UKB application 7089.
TOPMed WGS freeze 8 data
Phenotype data

We included four conventionally measured blood lipids in this

study: LDL-C, TC, TG, and HDL-C. Detailed phenotype calculation

and harmonization were described elsewhere.40 Briefly, LDL-C was

either directly measured or calculated by the Friedewald equation

when TGs were < 400 mg/dL. We adjusted the TC by dividing by

0.8 and LDL-C by dividing by 0.7 when statins were present.10,39

For TGs, we additionally performed the natural log transformation

for analysis because TGs were skewed.We then fitted a linear regres-

sion model for each phenotype to obtain the residuals after adjust-

ing for age at lipidmeasurement, age2, sex, race/ancestry, study, and

the first 11 ancestral principal components (PCs) (as recommended

by the TOPMed Data Coordinating Center). For Amish participants,

we additionally adjusted for APOB c.10580G>A (p.Arg3527Gln;

rs5742904) for LDL-C and TC and adjusted for APOC3 c.55C>T

(p.Arg19Ter; rs76353203) for HDL-C and TG.47–49 The residuals

were inverse rank normalized and rescaled by the standard devia-

tion (SD) of the original phenotype within each group.40

Genotype data

WGS data were accessed from the TOPMed freeze 8 release. DNA

samples were sequenced at the >303 target coverage at seven

centers (Broad Institute of MIT and Harvard, Northwest Genomics

Center, New York Genome Center, Illumina Genomic Services,

PSOMAGEN [formerly Macrogen], Baylor College of Medicine Hu-

man Genome Sequencing Center, and McDonnell Genome Insti-

tute [MGI] at Washington University).38 The reads were aligned to

human genome build GRCh38 using the BWA-MEM algorithm.

The genotype callingwas performedusing the TOPMed variant-call-

ing pipeline (https://github.com/statgen/topmed_variant_calling).

The resulting binary variant call format (BCF) files were converted

to SeqArray genomic data storage (GDS) format and were annotated

internally by curating data from multiple database sources using

functional annotation of variant-online resource (FAVOR [http://

favor.genohub.org]).43 The resulting annotated GDS (aGDS) files

were used in this study. We computed the genetic relationship ma-

trix (GRM) using R package PC-relate and subtracted GRM from

those samples with lipid phenotypes using R package GENESIS.
The American Jo
Human reference genome annotations for lncRNA genes
Multiple lncRNA annotations are available. We obtained four

lncRNA annotation resources with different qualities and sizes and

merged them to improve comprehensiveness. They include

GENCODE,25,32,33 FANTOM5CAT,34NONCODE,35 and lncRNAKB.36

GENCODE

GENCODE is the default human reference genome annotation for

both Ensembl andUCSC genome browsers. It is also widely adopted

bymany large-scale genomic consortiums including TOPMed.GEN-

CODE gene sets cover lncRNAs, pseudogenes, and small RNAs in

addition to protein-coding genes. The lncRNA annotation in

GENCODE is almost entirely manual, which ensures the quality

and consistency of the data.We downloaded theGENCODEversion

38 (December 2020) human release from https://ftp.ebi.ac.uk/pub/

databases/gencode/Gencode_human/release_38/gencode.v38.long_

noncoding_RNAs.gtf.gz and kept 17,944 lncRNA genes with a stable

identifier and the genomic location information.

FANTOM CAT

The functional annotation of the mammalian genome (FANTOM)

CAGE-associated transcriptome (CAT) meta-assembly combines

bothpublishedsources andin-house short-readassemblies. Itutilizes

CAGE tags, which mark transcription start sites (TSSs), to identify

human lncRNA genes with high-confidence 50 ends. We acquired

the FANTOM CAT (lv3 robust) lncRNAs assembly from https://

fantom.gsc.riken.jp/5/suppl/Hon_et_al_2016/data/assembly/lv3_robust/

FANTOM_CAT.lv3_robust.only_lncRNA.gtf.gz. Because the FANTOM5

annotations were on genome v.hg19 (GRCh37), we lifted over to

genome version hg38 (GRCh38) using the UCSC liftOver tool.50

lncRNAKB

Long non-coding RNA Knowledgebase (lncRNAKB) is an integrated

resource for exploring lncRNA biology in the context of tissue spec-

ificity and disease association. A systematic integration of annota-

tions using a cumulative stepwise intersection method from six

independent databases resulted in 77,199 human lncRNAs. We

downloaded the lncRNAKB v.7 from https://osf.io/ru4d2/.

NONCODE

NONCODE database integrates annotations from both literature

searches and other public databases. The latest version, NONCODE

v.6, is the single largest collection of lncRNAs, describing 96,422

lncRNAgenes inhumans. Each lncRNAgene in theNONCODEdata-

basehas beenassigneda uniqueNONCODE ID.Wedownloaded the

whole NONCODE v.6 human data from http://www.noncode.org/

datadownload/NONCODEv6_hg38.lncAndGene.bed.gz.

Integration across the lncRNA annotations

Wekept only those lncRNAgenes ranging in length from200nt to 5

kilobases (kb).We limited themaximum length of a lncRNA gene to

5 kb to control for the computational complexity.51 Overlapping

lncRNAgenes betweenFANTOMandGENCODEusing the Ensembl

stable identifier were removed.We split each annotation file into in-

dividual files by chromosome with the start and end coordinates of

the lncRNA genes. All duplicated lncRNAs between annotation files

were removedbycheckingwhether theyhave the samestart andend

coordinates.We then used the following intersection order based on

experimental validation to merge the four lncRNA annotations: (1)

GENCODE, (2) FANTOM5 CAT, (3) NONCODE, and (4) lncRNAKB.

Approximately 165,000 lncRNA genes were left for further analysis.
lncRNA rare-variant association test
lncRNA rare-variant sets

We obtained the start and end genomic coordinates (human

genome build GRCh38) of the lncRNA genomic regions from
urnal of Human Genetics 110, 1704–1717, October 5, 2023 1707
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our previously curated lncRNA gene list. We then defined aggrega-

tion units by using all the rare variants (MAF <1%) based on their

genomic locations with respect to the start and end genomic coor-

dinates of the lncRNA genes.We removed lncRNA rare-variant sets

that had fewer than two rare variants. For sensitivity analysis, we

only aggregated exonic and splicing variants in lncRNA genes

provided by GENCODE v.29, which is the default genome annota-

tion employed by TOPMed consortium.38

STAAR unconditional analysis

We applied the STAAR framework to identify rare variants in the

lncRNA variant sets that are associated with four quantitative lipid

traits (LDL-C, HDL-C, TG, and TC). STAAR is a scalable and power-

ful variant-set test that uses an omnibus multi-dimensional

weighting scheme to incorporate both qualitative functional cate-

gories and multiple in silico variant-annotation scores for genetic

variants. STAAR accounts for population structure and relatedness,

and is scalable for analyzing large WGS studies of continuous and

dichotomous traits by fitting linear and logistic mixed models.41

To perform the STAAR unconditional analysis, we first fitted an

STAAR null model using fit_null_glmmkin() function to account

for sample relatedness with phenotypic data, covariates, and

(sparse) GRM as input. For each of the four lipid phenotypes, we

adjusted for age, age2, sex, study, and PC1–PC11. We adapted

the STAAR gene-centric analysis for lncRNA by grouping all the

rare variants (MAF <1%) within each lncRNA region. We calcu-

lated the p value for each lncRNA rare-variant set using STAAR-

O, an omnibus test in the STAAR framework that combines p

values from multiple annotation-weighted burden tests, SKAT,

and ACAT-V using the ACAT method. A total of 13 aggregated

variant functional annotations were incorporated in STAAR-O,

including three integrative scores (CADD,52 LINSIGHT,53 and

FATHMM-XF54) and 10 annotation principal components

(aPCs)42 (Table S3). All analyses were performed using R packages

STAAR (v.0.9.6) and STAARpipeline (v.0.9.6).

STAAR conditional analysis adjusting for known GLGCGWAS variants

We performed conditional analysis to identify lncRNA rare-variant

association independent of known lipid-associated variants. We

obtained a list of 1,750 significant index variants (Table S4) associ-

ated with one or more lipid levels from GLGC’s latest lipid GWAS

results.18 Those significant index variants were identified itera-

tively starting with the most significant variant and grouping

the surrounding region into a locus based on the larger of

either 5500 kb or 50.25 cM, followed by a conditional analysis

using rareGWAMA, as previously described.18,19,55 The GLGC re-

sults were in genome build 37, and thus we lifted over the posi-

tions of GLGC index variants to genome build 38 to match the

TOPMed data. For each lncRNA gene, we adjusted for the GLGC

index variants falling in a 5500-kb window beyond that lncRNA

gene.

STAAR rare-variant association test adjusting for nearby protein-cod-

ing genes

The unconditional analysis showed that most lncRNA genes asso-

ciated with lipids are near known lipid genes that causeMendelian

lipid disorders (Table S5). We sought to perform conditional ana-

lyses adjusting lncRNA rare-variant sets for nearby protein-coding

genes. The adjusted nearby protein-coding genes can be divided

into two categories: the closest protein-coding genes to each

lncRNA gene and genes associated with Mendelian lipid disorders,

including ANGPTL8, APOA1, APOA5, APOB, APOC1, APOC3,

APOE, CETP, LDLR, LPA, LPL, PCSK7, PCSK9, PLA2G15, and

TM6SF2.19 Our primary analysis was to adjust for only rare nonsy-

nonymous variants (MAF <1%) within nearby protein-coding
1708 The American Journal of Human Genetics 110, 1704–1717, Oct
genes. We did two sensitivity analyses: one adjusted for rare syn-

onymous variants (MAF <1%) within nearby protein-coding

genes and another adjusted for rare predicted loss-of-function

(pLoF) variants (MAF <1%) within nearby protein-coding genes.

For each participant, we created three burden scores separately

by combining the minor allele counts of nonsynonymous, synon-

ymous, and pLoF variants with an MAF <1% carried within the

closest gene and the nearby lipid monogenic genes in a 250-kb

window. We re-fitted null models similar to the unconditional

analysis and added all the burden scores of the closest gene and

the nearby genes associated with monogenic lipid disorders (if

any) as additional covariates for each lipid phenotype. We then

repeated the STAAR procedures to calculate the STAAR-O p values

after adjusting for rare nonsynonymous, rare synonymous, and

rare pLoF variants.

Effective number of independent tests

Although we removed redundant lncRNAs, the remaining

lncRNAs can still have overlapping regions across different

genome annotations. Therefore, we adopted a principal compo-

nent analysis (PCA)-based approach, the simpleM method, to

calculate the effective number of independent tests.56 For each

chromosome, suppose we had tested K lncRNA rare-variant sets

(lncRNA1, lncRNA2, ., lncRNAK) for n individuals (1, 2, ., n);

we first found the minor allele counts of rare variants (MAF

<1%) carried by each individual within each lncRNA rare-variant

set that were tested by STAAR and constructed a n3K matrix.

We then derived the pairwise lncRNA correlation matrix RKxK

that reflected the correlation structure among the tests from

the constructed n3K matrix. We calculated the eigenvalues,

fli : l1 Rl1 R.RlKg, from the pairwise lncRNA correlation ma-

trix RKxK. The effective number of tests (Meff) for each chromosome

was estimated as Meff ¼ minðxÞ s:t:
Px

i¼1
li

PK

i¼1
li
> c, where c was a pre-

defined parameter that was set to 0.95. We added up the effective

number of tests (Meff) by each chromosome, assuming indepen-

dence between chromosomes. The Bonferroni correction formula

was then used to calculate the adjusted significance level as 0.05/

Meff as used for unconditional analysis.
lncRNA gene expression analysis
Study participants

This study included 1,505 participants from the FHS Third Gener-

ation cohorts.45 Blood samples for RNA-seq were collected from

Third Generation participants who attended the second examina-

tion cycle (2008–2011). Protocols for participant examinations

and collection of genetic materials were approved by the IRB at

BostonMedical Center. All participants provided written informed

consent for genetic studies. All research was performed in accor-

dance with relevant guidelines/regulations.

RNA-seq data collection, quality control, and data adjustment

The process of collection and isolation of RNA from whole blood

was described previously.57 All RNA samples were sequenced by

an NHLBI TOPMed program reference laboratory (Northwest Ge-

nomics Center) following the TOPMed RNA-seq protocol.38 All

RNA-seq data were processed by the University of Washington.

The raw reads (in FASTQ files) were aligned using the GRCh38

reference build to generate BAM files. The RNA-SeQC58 software

was used for processing of RNA-seq data by the TOPMed RNA-

seq pipeline to derive standard quality control metrics from

aligned reads. Gene-level expression quantification was provided

as read counts and transcripts per million (TPMs). GENCODE
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v.30 annotation was used for annotating gene-level expression.

We performed the trimmed mean of M values (TMM) normaliza-

tion on the gene read counts of RNA-seq data using the edgeR

R/Bioconductor package.59,60 We removed the lowly expressed

transcripts that have an SD equal to 0. To minimize confounding,

expression residuals were generated by regressing log2(TMMþ1)

values on technical covariates including year of blood collection,

batch (sequencing machine and time, plate, and well), and RNA

concentration.

Predicted complete blood count

Because 80% of the participants in this study had directly

measured cell count variables and only 20% received imputed var-

iables, partial least squares (PLS) method61 was used to create pre-

dicted complete blood count (CBC) data based on the RNA-seq

data. To improve the prediction, we set the Basophil percentage

(BA_PER) that is greater than 3 asmissing.We performed a PLS pre-

diction method with 3-fold cross-validation (2/3 samples for

training and 1/3 for validation) to impute these blood-cell compo-

nents using gene expression from RNA-seq.62 We then tested the

accuracy in the testing dataset. Prediction accuracy (R-squared)

varied across blood component: white blood cell (WBC), 58%;

platelet, 27%; neutrophil percentage, 82%; lymphocyte percent-

age, 85%; monocyte percentage, 77%; eosinophil percentage,

87%; and BA_PER, 32%.

Statistical analysis

We fitted a linear mixed-effects model for the residuals of the

TMM-normalized log2-transformed counts data and the lipid

phenotypes adjusting for predicted CBC, constructed surrogate

variables (SVs), sex, age, and family structure as variance-covari-

ance matrix using R/Bioconductor package GENESIS.63 SVs are

covariates constructed directly from gene expression data to adjust

for unknown, unmodeled, or latent sources of noise.64 We esti-

mated the SVs from expression residuals and each lipid phenotype

using the R/Bioconductor sva package.65 For each association, we

collected the effect estimate (b), T statistics, and p values.
Genome build
All genome coordinates in this manuscript are given in the NCBI

GRCh38/UCSC hg38 version of the human genome.
Results

Characteristics of TOPMed participants

We included 66,329 diverse participants from 21 cohort

studies in the NHLBI TOPMed consortiumwith blood lipid

levels. The discovery cohorts consisted of 29,502 (44.5%)

reported White, 16,983 (25.6%) reported Black, 13,943

(21.0%) reported Hispanic, 4,719 (7.1%) reported Asian,

and 1,182 (1.8%) reported Samoan participants (Table S1

and supplemental notes). Among the 66,329 participants,

41,182 (62%) were female. Themean age of the 66,329 par-

ticipants was 53 years (SD ¼ 15). The mean ages at lipid

measurement varied across 21 cohorts from 25 years

(SD ¼ 3.56) for the CARDIA to 73 years (SD ¼ 5.38) for

the CHS. We observed that the Amish cohort had a higher

concentration of LDL-C (140 [SD¼ 43] mg/dL) and HDL-C

(56 [SD ¼ 16] mg/dL) as well as lower TG (median 63

[IQR ¼ 50] mg/dL), consistent with the known founder

mutations in APOB and APOC3.39
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Identification of rare lncRNA variants associated with

blood lipid traits

We defined lncRNA testing units using the available

genomic positions in four genome annotation projects

described in the material and methods. There were

11,349 lncRNA genes obtained from GENCODE, 16,227

from FANTOM5 CAT, 78,166 from NONCODE, and

59,633 from lncRNAKB. In total, we tested 165,375

lncRNA genes, among which the average number of rare

variants in each lncRNA was 483 (SD ¼ 572) and the me-

dian number of rare variants in each lncRNA was 241.

The minimum and the maximum number of rare variants

among the lncRNAs being tested are 2 and 2,947

(Figure S1).

Our aggregation of lncRNAs across four lncRNA resources

led to an overlap in the lncRNA units, leading to non-inde-

pendent tests of association of the lncRNAs with blood lipid

levels. We estimated the effective number of tests (Meff) us-

ing a PCA-based approach56 because the traditional Bonfer-

roni correction would be too conservative and reduce power

to detect association with blood lipid levels.31 Meff was esti-

mated as 111,550, providing a Bonferroni correction signif-

icance threshold of a ¼ 0:05=111;550 ¼ 4.5 3 10�7.

We applied STAAR framework41 to identify the lncRNA

rare-variant sets that associated with quantitative lipid traits

(LDL-C, HDL-C, TC, and TG) using TOPMed WGS data.

STAAR-O identified 83 genome-wide significant associations

(28withLDL-C,20withTC,19withHDL-C, and16withTG)

(Tables 1 and S5). Among the 83 genome-wide significant as-

sociations, there are 54 unique lncRNAs. Among 54 unique

lncRNAs, 28 are associated with specific lipid levels, 16 are

associated with both LDL-C and TC, 7 are associated with

both HDL-C and TG, and the remaining 3 lncRNAs

(ENSG00000267282.1, NONHSAG026007.2, NONHSAG

026009.2) are associated with three lipid traits: LDL-C, TC,

and TG. The 3 lncRNAs are all on chromosome 19 neigh-

boring the NECTIN2-TOMM40-APOE-APOC1 region. We

observed that all the significant associations in the uncondi-

tional analysis were in the known lipid GWAS loci (defined

as a 5500-kb window beyond a GLGC index variant)

(Table S5). We performed a sensitivity analysis aggregating

only exonic and splicing variants in lncRNA genes and

observed consistent results to our primary analysis results

(Figure S2).

Conditional analyses of trait-associated lncRNAs

adjusting for known GWAS variants and

nonsynonymous variants within the nearby genes

associated with monogenic lipid disorders

After conditioning on known lipid-associated variants in

a5500-kbwindow beyond a variant set, 61 out of 83 associ-

ations (73%) remained significant (20 with LDL-C, 14 with

TC, 15 with HDL-C, and 12 with TG) at the Bonferroni-cor-

rected level of 0.05/83¼ 6.03 10�4, indicating that the asso-

ciations between the lncRNA genes and lipid levels are

distinct from the known GWAS variants (Table S5). The

known lipid GWAS variants adjusted for each lncRNA
urnal of Human Genetics 110, 1704–1717, October 5, 2023 1709



Table 1. Summary of unconditional analysis, conditional analyses, and replication

Method LDL-C TC HDL-C TG Total number

STAAR unconditional analysisa 28 20 19 16 83

Conditioning on known lipid GWAS
variantsb

20 14 15 12 61

Conditioning on rare nonsynonymous
variants within the closest gene and nearby
lipid monogenic genesc

18 13 15 12 58

Conditioning on rare synonymous variants
within the closest gene and nearby lipid
monogenic genesc

20 14 15 12 61

Conditioning on rare pLoF variants within
the closest gene and nearby lipid monogenic
genesc

20 14 15 12 61

Replication in UKB WGSc 13 7 8 6 34

Numbers are count of significant lipid-associated lncRNAs. Results are available in Table S5. STAAR, variant-set test for association using annotation information;
GWAS, genome-wide association study; UKB, UK Biobank; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total
cholesterol; TG, triglycerides; lncRNA, long non-coding RNA.
aBonferroni correction level of 0.05/111,550 ¼ 4.5 3 10�07.
bBonferroni correction level of 0.05/83 ¼ 6.0 3 10�04.
cBonferroni correction level of 0.05/61 ¼ 8.2 3 10�04.
association are shown in Table S5. The most significant

association for LDL-C and TC was the lncRNA NONHSAG

026007.2 (chr19:44,892,420–44,903,056) near the NEC-

TIN2-TOMM40-APOE-APOC1 region. NONHSAG026007.2

remained significantly associated with LDL-C (p value ¼
2.44310�15) andTC(pvalue¼2.17310�27) after adjusting

for nearby known lipid-associated variants (Figure 2).

The most significant associations for HDL-C and TG were

NONHSAG063125.1 (chr11:116,790,241–116,805,983) and

NONHSAG09700.3 (chr11:116,773,068–116,779,841), respec-

tively, both near APOA5-APOC3-APOA1 region. NON

HSAG063125.1 remained similarly associated after condi-

tioning on known lipid GWAS variants, while NON-

HSAG09700.3 became even more significant (Figure 2).

We then conditioned the GWAS-distinct associations on

the rare nonsynonymous variants within the closest pro-

tein-coding gene and nearby genes associated with mono-

genic lipid disorders and observed that most (94.9%) of

the lncRNA associations with lipid levels remained signifi-

cant (Table 1; Figure S3). Additionally, when conditioned

on the rare synonymous variants or rare pLoF variants

within the closest protein-coding gene and nearby genes

associated with monogenic lipid disorders, the number of

associations remained the same as the number of GWAS-

distinct associations (Table 1; Figure S4).
Replication of significant lncRNA-blood lipid trait

associations

Replication of 61 lncRNAs associated with blood lipid

levels was evaluated in 139,849 UKB individuals with

WGS and blood lipid levels (Table S2). We replicated 34

out of 61 (56%) lncRNA associations with blood lipid

levels at a Bonferroni-corrected threshold of 0.05/61 ¼
8.2 3 10�04 (Table S5). The most significant associations in

the UK Biobank replication were NONHSAG025996.2

(chr19:44,694,720–44,696,054) near APOE-APOC1 region
1710 The American Journal of Human Genetics 110, 1704–1717, Oct
for LDL-C, NONHSAG109604.1 near APOE-APOC1 region

for TC, and NONHSAG009700.3 near APOA5-APOC3-

APOA1 region for both HDL-C and TG (Table S5), which

were consistent with the results from TOPMed.
lncRNA gene expression analysis in FHS RNA-seq data

We overlapped the significant lipid-associated lncRNA

genes with the lncRNA genes available in the FHS RNA-

seq data generated by TOPMed.57 Because the gene-level

expression data in FHS is annotated by GENCODE v.30,

we limited the lncRNA genes to those presented in

GENCODE. Among the 54 unique lncRNA genes that are

significantly associated with either one of the lipid traits

using TOPMed WGS data, 10 lncRNA genes are annotated

by GENCODE, and 8 out of 10 can be found in the FHS

data. We performed association analyses of expression

levels of those 8 significant lipid-associated lncRNA

genes with blood lipid levels (LDL-C, TC, HDL-C, TG)

(Table S6). In total, we tested 12 associations of lncRNA

gene expression with blood lipid levels (Table S6). The

small proportion of overlapping was partially due to

lncRNA genes’ generally lower expression. The lowly ex-

pressed genes were filtered out when processing the gene

expression data.

Four associations achieved Bonferroni-adjusted signifi-

cance, including the gene expression level of ENSG000

00267282.1 (chr19:44,881,088–44,890,922) associated

with LDL-C, TC, and TG, and the gene expression level of

ENSG00000266936.1 (chr19:11,010,917–11,016,011) asso-

ciatedwith TC. ENSG00000267282.1 is an antisense ofNEC-

TIN2 (also known as PVRL2) (Figure 3). NECTIN2 encodes

a single-pass type I membrane glycoprotein and operates

as a cholesterol-responsive gene. It was identified in

the atherosclerotic arterial wall as one of the genes

that was notably downregulated in response to plasma

cholesterol lowering (PCL) in atherosclerosis-prone mice
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Figure 2. Significantly associated lncRNAs with four blood lipid traits
The significantly associated lncRNA genes (STAAR-O p value< 4.53 10�07) are ordered by chromosome, followed by genomic positions.
Dots in red and blue represent the �log10(STAAR-O p value) of the STAAR unconditional and conditional analysis adjusting for known
lipid-associated GWAS variants, respectively. The black dashed line is the Bonferroni correction level of 0.05/83 ¼ 6.0 3 10�04. Arrows
indicate at least 104-fold change of STAAR-O p values comparing the unconditional analysis and conditional analysis adjusting for
known lipid-associated GWAS variants.
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Figure 3. lncRNAs in the APOE region associated with LDL-C
Upper shows the �log10(STAAR-O p value) of the STAAR unconditional analysis, STAAR conditional analysis adjusting on known lipid
GWAS variants, and STAAR conditional analysis adjusting for rare non-synonymous variants within the closest protein-coding gene and
nearby genes associated with monogenic lipid disorders. The bottom is the nearby protein-coding genes with the genomic coordinates.
The vertical dashed line is the position of the known GWAS variants that were conditioned on. The black horizontal dashed line is the
Bonferroni correction level of 0.05/111,550¼ 4.53 10�07, and the gray horizontal dashed line is the Bonferroni correction level of 0.05/
83 ¼ 6.0 3 10�04.
withahuman-likeplasmacholesterolprofile.66Additionally,

ENSG00000267282.1 was one of the lncRNA associations

that we replicated in the independent UKB (Table S5). We

also queriedwhether the rare variants in this lipid-associated

lncRNA led to an alteration of the corresponding lncRNA

levels in the blood. However, due to the small number of

overlapping individuals between FHS RNA-seq data and

TOPMed WGS data (n ¼ 512), the number of rare variants

tested in ENSG00000267282.1 for the association of its

gene expression level was 59. Compared with the original

analysis using all 66,329 individuals for the association

with lipid levels, the number of rare variants tested in

ENSG00000267282.1 is 1,417. As a result, the association

of the rare variants in the ENSG00000267282.1 with

ENSG00000267282.1 gene expression levels in blood was

not significant (STAAR-O p value ¼ 0.68).

Lookup for previously reported lncRNA therapeutic

target

We further investigated one lncRNA, liver-expressed LXR-

induced sequence (LeXis), which is a mediator of the

complex effects of LXR signaling on hepatic lipid meta-

bolism to maintain hepatic sterol content and serum
1712 The American Journal of Human Genetics 110, 1704–1717, Oct
cholesterol levels.30,67 A potential ortholog of LeXis in hu-

mans, TCONS_00016452 (chr9:104,990,086–104,991,780),

is found in a region adjacent to ABCA1. It was not a signifi-

cant signal for any lipid trait in our study, whichmight sug-

gest that it was not a functional ortholog of LeXis that sub-

stantially influences the blood lipid traits we measured.

However, the rapid evolutionary turnover of lncRNAs still

hinders the functional identification between species.68
Discussion

In this study,weconductedgenome-wide rare-variant associ-

ations of 165,000 lncRNAs in ancestrally diverse TOPMed

participants (n ¼ 66,329) with measured blood lipid levels.

Using rare-variant association tests, we observed 83 lncRNAs

significantly associated with blood lipid levels, and of these,

61 (73%) were conditionally distinct from common regula-

tory variation and rare protein-coding variation at the

same loci. Notably, most of these association signals

were replicated in an independent WGS dataset, UKB. We

also highlighted one trait-associated lncRNA that is close to

NECTIN2 and TOMM40, ENSG00000267282.1 (chr19:44,
ober 5, 2023



881,088–44,890,922), whose gene expression level was also

shown to be associated with lipid levels using RNA-seq data

from the FHS data. Together, this systematic assessment of

rare lncRNA variants suggests an additional genomic

element in known lipid loci that is distinct from the known

lipid-associated genes.

Genetic variation for blood lipid levels has been

observed across the allelic spectrum with common, rare

coding, and rare non-coding variants.40 Blood lipids have

been associated with non-coding regulatory variants and

coding variation in genes and are now also associated

with rare variants in lncRNAs. We show that all the trait-

associated lncRNAs are in genomic regions previously

associated with blood lipid traits (Table S5), leading to

the plausibility of these results. About 75% of the associa-

tions are conditionally distinct from common regulatory

variation and rare protein-coding variation at the same

loci previously identified through GWAS and whole-

exome sequencing studies. This indicates that the regulato-

ry variants through lncRNAs additionally contribute to the

variation of blood lipid levels.

Despite numerous reports indicating the potential regu-

latory role of lncRNAs, only a small proportion of them

have substantial evidence to support such claims.26,27,68

The fraction of lncRNAs that are functional remains un-

known. Through a comprehensive study of over 165,000

lncRNAs, we found that the majority of lncRNAs are not

associated with a lipid trait. However, there are still some

lncRNAs that harbor variants that predispose individuals

to phenotypic differences in blood lipid levels. Our results

suggest that investigators should first prioritize individual

lncRNAs near the known trait-associated loci (e.g.,

ANGPTL8, APOA1, APOA5, APOB, APOC1, APOC3, APOE,

CETP, LDLR, LPA, LPL, PCSK7, PCSK9, PLA2G15, and

TM6SF2) for analysis, which is more likely to yield robust

experimental observations.

lncRNAs are involved in diverse aspects of lipid meta-

bolism, including mechanisms with effects at the tran-

scriptional level, post-transcriptional level, and directly

on proteins.26 Our results highlight the therapeutic poten-

tial of lncRNAs that overlap with nearby protein-coding

genes in both the anti-sense and sense direction. Some

lncRNAs have already been reported to act in cis to regulate

the expression of the neighboring protein-coding genes—

for example, APOA1-AS and APOA4-AS.69 Novel therapeu-

tics for lipid-associated lncRNAs could be developed by

either targeting DNA by adeno-associated virus (AAV)

vectors/CRISPR-Cas9 system or targeting RNA by antisense

oligonucleotides (ASOs)/small interfering RNA (siRNA).70

Several limitations of our study should be noted. First,

we didn’t consider lncRNAs with slightly different start

and end coordinates as duplications when we created the

curated list of lncRNAs. Second, our RNA-seq analyses

were restricted to GENCODE annotation. The small pro-

portion of overlapping RNA-seq data and WGS data limits

the ability to test rare lncRNA variants with their gene

expression. Third, we did not correct for the number of
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tested lipid traits. However, there is a moderate-to-high

correlation among the blood lipid levels. For example, us-

ing the data from the TOPMed participants, we calculated

that the correlation between LDL-C and TC is 0.91 and the

correlation between HDL-C and TG is 0.44. Therefore, cor-

recting for the number of tested lipid traits would lead to

overcorrection. Fourth, to assess a causal role of the rare

lncRNA variants, we need to further show that they are

correlated with lncRNA expression but not correlated

with altered expression or function of other genes nearby.

In summary, we show in a large ancestrally diverse study

that lncRNAs are an additional genomic element in known

lipid gene regions associated with blood lipoprotein levels

that are distinct from the known genes. We comprehen-

sively evaluated 165,000 lncRNAs for their association

with lipid traits and replicated signals in an independent

UKB WGS cohort.
Data and code availability

The lncRNA annotations being used in this study are pub-

licly available to download: GENCODE (https://ftp.ebi.ac.

uk/pub/databases/gencode/Gencode_human/), FANTOM5

CAT (https://fantom.gsc.riken.jp/cat/), lncRNAKB (https://

osf.io/ru4d2/), and NONCODE (http://www.noncode.org/

datadownload/). The curated list of lncRNAs is available

on GitHub: https://github.com/kyleyxw/lncRNA-paper. In-

dividual whole-genome sequence data for TOPMed and

harmonized lipids at individual sample level are available

through restricted access via the TOPMed dbGaP Exchange

area. Summary-level genotype data from TOPMed are avail-

able through the BRAVO browser (https://bravo.sph.umich.

edu/). The UK Biobank (UKB) whole-genome sequence data

can be accessed through UKB Research Analysis Platform

(RAP) through the UKB approval system (https://www.

ukbiobank.ac.uk). The dbGaP accessions for TOPMed co-

horts are as follows: Old Order Amish (Amish), phs000956

and phs00039; Atherosclerosis Risk in Communities study

(ARIC), phs001211 and phs000280; Mt. Sinai BioMe Bio-

bank (BioMe), phs001644 and phs000925; Coronary Artery

Risk Development in Young Adults (CARDIA), phs001612

and phs000285; Cleveland Family Study (CFS), phs000954

and phs000284; Cardiovascular Health Study (CHS),

phs001368 and phs000287; Diabetes Heart Study (DHS),

phs001412 and phs001012; Framingham Heart Study

(FHS), phs000974 and phs000007; Genetic Studies of

Atherosclerosis Risk (GeneSTAR), phs001218 and phs000

375; Genetic Epidemiology Network of Arteriopathy

(GENOA), phs001345 and phs001238; Genetic Epidemi-

ology Network of Salt Sensitivity (GenSalt), phs001217

and phs000784; Genetics of Lipid-Lowering Drugs and

Diet Network (GOLDN), phs001359 and phs000741;

Hispanic Community Health Study - Study of Latinos

(HCHS_SOL), phs001395 and phs000810; Hypertension

Genetic Epidemiology Network and Genetic Epidemiology

Network of Arteriopathy (HyperGEN), phs001293 and
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phs001293; Jackson Heart Study (JHS), phs000964 and

phs000286; Multi-Ethnic Study of Atherosclerosis (MESA),

phs001416 and phs000209; Massachusetts General Hospi-

tal Atrial Fibrillation Study (MGH_AF), phs001062 and

phs001001; San Antonio Family Study (SAFS), phs001215

and phs000462; Samoan Adiposity Study (SAS), phs000

972 and phs000914; Taiwan Study of Hypertension using

Rare Variants (THRV), phs001387 and phs001387; and

Women’s Health Initiative (WHI), phs001237 and

phs000200.

All analyses were performed using R Statistical Software

(v.3.6.2; R Core Team 2019). R code for implementing

the analysis is available at the public GitHub Repository

https://github.com/kyleyxw/lncRNA-paper. STAAR is im-

plemented as an open-source R package available at

https://github.com/xihaoli/STAAR. STAARpipeline is im-

plemented as an open-source R package available at

https://github.com/xihaoli/STAARpipeline.
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