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Summary
Amajor challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we

integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic

datasets to discover regulatory mechanisms underlying lipid associations.We first prioritize lipid-associated genes with expression quan-

titative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic

enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and

highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Over-

lapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an

integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants

with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent ev-

idence across functional datasets supporting their roles in lipid biology.
Introduction

Most GWAS findings have not directly led to mechanistic

interpretations, largely because approximately 90% of

GWAS associations map to noncoding sequences.1,2 Mech-
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anistic interpretations in GWAS have proven challenging

because the strongest signals identified in GWAS typically

contain many variants in strong linkage disequilibrium

(LD)3 and functional mechanisms including genes of ac-

tion are often not clear from GWAS data alone.4,5
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for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, University
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Linking trait-associated variants to genome function has

emerged as a promising model for mechanistic interpreta-

tion of noncoding findings in GWAS. This ‘‘variant-to-

function’’ model is premised on recent observations that

noncoding variants often affect a trait of interest through

the regulation of genes and processes in trait-relevant cell

types or tissues.2,6 Implementing this functional model

in GWASs has become more feasible as large-scale func-

tional genomic resources, such as epigenomic7 and tran-

scriptomic8 catalogs, have been systematically generated

across a wide range of human cell types and tissues. The

integration of functional genomics with GWASs has iden-

tified regulatory mechanisms in variants associated with

some flagship disorders such as obesity9 and schizo-

phrenia,10 yielding important functional insights into

the genetic architecture of human complex traits.

The history of the human genetics of lipids mirrors the

successes and challenges of GWASs. Increasing sample

size and genetic diversity has significantly boosted the po-

wer of discovery: the first lipid GWAS in 2008 with 8,816

European-descent individuals identified 29 lipid-associ-

ated loci;11 the latest study of 1.6million individuals across

five ancestries12 found 941. Despite the dramatic increase

in the number of associations, our biological understand-

ing of many of these genetic discoveries remains limited.

The causal gene has been confidently assigned at only a

small fraction of these loci,2 and the regulatory mecha-

nism connecting variant to phenotype has been conclu-

sively characterized for only a handful of genes.5 Further-

more, systematic mapping of lipid-associated variants to

their biological functions has beenmissing in the literature

at the time of this study.

Here we conduct a genome-scale integrative analysis on

the largest published GWAS to date of five lipid pheno-

types (LDL, or low-density lipoprotein; HDL, or high-den-
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sity lipoprotein; TC, or total cholesterol; nonHDL, or

non-high density lipoprotein; and TG, or triglycerides)

involving 1.65 million individuals from five ancestries.12

Combining the lipid GWAS with a wide array of functional

genomic resources in diverse human tissues and cell types,

we identify regulatory mechanisms of noncoding genetic

variation in lipids with a full suite of computational ap-

proaches. Further, we develop a generalizable framework

to understand how tissue-specific gene regulation can

explain GWAS findings and we demonstrate its real-world

value on lipid-associated loci.
Material and methods

GWAS
We used the recently published GWAS data from the Global Lipids

Genetics Consortium (GLGC) for five blood lipid traits (LDL, HDL,

TC, TG, and nonHDL) in 1.65 million individuals from five

ancestry groups12 (African and African-admixed, East Asian, Euro-

pean, Hispanic, South Asian) at 91 million variants imputed pri-

marily from the Haplotype Reference Consortium13 or 1,000 Ge-

nomes Phase 3.14 GWASs of individual cohorts were based on

the hg19 version of the human reference genome. MR-MEGA15

was used for meta-analysis across cohorts.

We defined ‘‘sentinel variants’’ as the most significant variant at

independent trait-associated loci in the genome. The windows

are the greater of 500 kb or 0.25 cM around the sentinel variant;

genetic distances were defined using reference maps from

HapMap 3.16 We performed a second round of conditional anal-

ysis, conditioning on the sentinel variants to identify and remove

any significant windows that are shadow signals of (or dependent

on) a neighboring locus to enforce independence of associated

loci.

For each sentinel variant, we defined credible sets of potentially

causal variants within5500 kb region around the sentinel variant

representing the set of variants harboring the causal variant with
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a 95% posterior probability. Full details of the credible set con-

struction are reported in our recent GWAS publication.12 The cred-

ible sets are freely available (web resources).
Colocalization of GWAS associations with eQTLs
We performed statistical colocalization of lipid GWASs with eQTLs

obtained fromGTEx v8 across 49 tissues.8 For each of the five lipid

traits, we used the same sentinel variants defined in the previous

section to represent approximately independent GWAS-associated

windows (also removing shadow signals as described before). For

each such window, we ran eQTL colocalization with GTEx v8 sin-

gle-tissue cis-eQTL summary statistics.8 For each of 49 GTEx tis-

sues, we first identified all genes within 1 Mb of the sentinel

SNP, and then restricted analysis to those genes with significant

eQTLs (i.e., eGenes as defined by GTEx) in that tissue

(FDR < 0.05). We used the R package coloc (R v.3.4.3, coloc

v.3.2.1)17 with default parameters to run colocalization between

the GWAS signal and the eQTL signal for each of these cis-eGenes,

using as input those SNPs in the defined window (greater than 500

kb or 0.25 cM on either side of the lead variant) that are present in

both datasets. Because eQTL summary statistics were in GRCh38,

we lifted over the GWAS summary statistics from hg19 to GRCh38

using liftOver.18 As in previous studies,19 we used a colocalization

posterior probability of (PP3þPP4) > 0.8 to identify loci with

enough colocalization power, and PP4/PP3 > 0.9 to define those

loci that show significant colocalization, where PP4 represents

posterior probability of a single shared signal, and PP3 represents

posterior probability of two unique signals in the GWAS and

eQTL datasets.
Overlap with promoter Capture-C data
We used four promoter-focused Capture-C (henceforth Capture-C)

datasets from three human cell types (web resources) to capture

physical interactions between gene promoters and their regulatory

elements. The four Capture-C datasets are (1) three biological rep-

licates of HepG2 liver carcinoma cells (HepG2.1),20 (2) another

HepG2 dataset described in Selvarajan et al. (HepG2.2),21 (3) hepa-

tocyte-like cells (HLC) produced by differentiating three biological

replicates of iPSCs (which in turn were generated from peripheral

blood mononuclear cells using a previously published protocol22),

and (4) an adipose dataset obtained from Pan et al.23 that was pro-

duced using primary human white adipocytes. Across the four da-

tasets, the number of significant interactions on the same chromo-

some ranges from 67,819 (adipose) to 126,565 (HLC). The bait end

has a median size of 2,141 (HepG2.1) to 6,567 (HepG2.2) bases.

The interacting end has a median size of 2,100 (HepG2.1) to

3,243 base pairs (HepG2.2) for all datasets. The median distance

between the bait and interacting ends for all interactions on the

same chromosome ranges from 71,722 (HLC) to 285,140 base

pairs (adipose).

The detailed protocol to prepare HepG2 or HLC cells for the

Capture-C experiment is described in Chesi et al.20 Briefly, for

each dataset, 10 million cells were used for promoter Capture-C li-

brary generation. Custom capture baits were designed using an

Agilent SureSelect library design targeting both ends of DpnII re-

striction fragments encompassing promoters (including alterna-

tive promoters) of all human coding genes, noncoding RNA, anti-

sense RNA, snRNA, miRNA, snoRNA, and lincRNA transcripts,

totalling 36,691 RNA baited fragments. Each library was then

sequenced on an Illumina HiSeq 4,000 (HepG2) or Illumina

NovoSeq (HLC), generating 1.6 billion read pairs per sample (50
1374 The American Journal of Human Genetics 109, 1366–1387, Aug
base pair read length). We used HiCUP v0.7.2 24 to process the

raw FASTQ files into loop calls and CHiCAGO v1.6.0 25 to define

significant looping interactions; we defined a CHiCAGO score of

5 as significant, as specified in the default parameters.

Starting with Capture-C maps processed as described above, we

re-annotated the baits to gene IDs from Gencode v.19 26 to ensure

uniformity of gene annotations with the rest of our pipeline. For

each bait, we identified any gene whose transcription start site

(TSS) from any transcript in Gencode v.19 was within 175 base

pair distance from the bait (to account for differing bait designs

for external datasets whichmay not directly overlap the canonical

TSS). We filtered all datasets to only include interactions in which

the interacting end was not another bait. Enrichment with colo-

calized genes was robust to our choice of distance between bait

and gene (enrichment with eQTL colocalized genes ranging

from 2.94 to 2.96 for bait distances from 0 to 350 base pairs).

To identify genetic variants associated with any of the five lipid

traits that physically interact with locations in the genome, we

used the R package Genomic Ranges v.1.30.327 to find overlap be-

tween credible sets for each trait’s GWAS and the previously anno-

tated promoter Capture-C data. Given the bait end of a gene, we

defined a GWAS locus as interacting with this gene if a variant

in the credible set for this GWAS locus fell inside the interacting

end.

Presence of gene-variant pairs in same topologically

associated domains
To assess the frequency of colocalized gene-sentinel variant pairs

in the same topologically associated domain (TAD), we used a

list of 2,499 publicly available TADs from human liver28 (web re-

sources). We computed as a fraction the number of colocalizations

with the sentinel variant and colocalized gene in the same TAD

divided by all colocalizations in which the sentinel variant lies

in a TAD. To test whether this fraction was statistically significant,

we generated random TAD boundaries (using bedtools shuffle)

1,000 times and calculated the same fraction for these randomly

generated TAD boundaries.

Pathway enrichment
We used ClusterProfiler v3.6.029 to look for pathways over-repre-

sented in each gene list: genes with eQTL colocalization and genes

interacting with variants in GWAS credible sets. We used the en-

richKEGG function to look for enriched pathways in the latest

version of the KEGG database.30 We first re-mapped Gencode

IDs to gene symbols using the Gencode v.24 annotation and

then used the biomaRt R package v2.34.231 to convert gene sym-

bols to Entrez IDs. We ran enrichKEGG to identify enriched path-

ways that were significant at a Benjamini-Hochberg threshold of

0.05.

Enrichment in known lipid-associated genes
We calculated enrichment odds ratio of genes identified in our

analysis with four known sets of lipid-associated genes using the

Fisher exact test (R function fisher.test). First, we identified 33

Mendelian genes from ClinVar32 with lipidemia-associated

ICD10 codes (E78). Second, we used 35 genes with rare-coding var-

iants associatedwith lipid levels.33 Third, we extracted 1,115 genes

associated with ‘‘cholesterol’’ or ‘‘lipidemia’’ phenotypes in mouse

knockouts from theMouse Genome Informatics (MGI) database.34

Fourth, we identified 4,008 genes from a transcriptome-wide asso-

ciation study (TWAS) on the same GWAS and GTEx v8 summary
ust 4, 2022



Figure 1. Schematic overview of the multi-layer functional genomic analysis
We integrate GWAS summary statistics for five lipid phenotypes with eQTL and chromatin interaction data to identify potential genes
mediating the GWAS loci, and use epigenomic annotations to identify regulatorymechanisms at these loci. For a GWAS locus indexed by
a lead variant X, A, B, and C represent nearby eGenes across tissues, and SNPs around SNP X represent variants in the credible set for this
locus.
statistics using the S-PrediXcan software35 default setup. The

TWASmethod accounts for allelic heterogeneity and thus comple-

ments the eQTL colocalization approach that assumes one causal

variant per locus.

TF binding sites
We extracted TF binding sites from ChIP-seq data of 161 TFs in

91 cell types from the ENCODE project7 (web resources). We

included all cell types in our primary analysis because TFs

were not comprehensively assayed in most cell lines. We also per-

formed a secondary analysis using TF binding sites from HepG2

only. All TF binding sites were aligned to the hg19 version of hu-

man reference genome (https://www.encodeproject.org/chip-seq/

transcription_factor/).

Stratified LD score (S-LDSC) regression analysis
We used LDSC version 1.0.136 to estimate the enrichment of

heritability explained using GWAS summary statistics in different

epigenetic and transcriptomic annotations, including gene

expression, chromatin marks, and TF binding sites. The gene

expression and chromatin mark annotations across 205 datasets

from more than 170 tissues and cell types and the corresponding

LD scores were provided as Multitissuegeneexpr1000Gv3 and

Multitissuechromatin1000Gv3 databases in LDSC software (web

resources). The LD scores for binding sites of each TF were esti-

mated from 1,000 Genomes Phase 3 European samples using

ldsc.py –l2. We first converted the summary statistics for each

phenotype to LDSC-formatted summary statistics using munge_

sumstats.py. Second, we ran ldsc.py using the baseline_v1.2

model on each annotation to estimate enrichment of

heritability. For primary analyses, we used multi-ancestry GWAS

summary statistics and LD scores estimated from 1,000 Genomes

Phase 3 European samples. For secondary analyses on East Asian
The American
(EAS) GWAS alone, we obtained EAS-specific LD scores for the

same functional annotations.37
Genomic regulatory elements and GWAS overlap

algorithm (GREGOR) analysis
We used GREGOR38 to estimate enrichment of sentinel variants

for each lipid phenotype in TF binding sites for 161 TFs from

ENCODE compared to a null distribution of variants matched

for allele frequency. We ran GREGOR with default parameters,

specifying 0.8 as the R2 threshold, window size of 1 Mb, and

‘EUR’ as the population. Annotations with enrichment >2 and

FDR-adjusted p value < 0.05 were considered significant.
Enrichment in single-cell expression data
We overlapped our list of colocalized genes with publicly available

single-cell RNA-sequencing data of 8,444 cells from liver39 and

38,408 cells from adipose (web resources) in humans. For both da-

tasets, we downloaded normalized TPM data and existing tSNE

cluster annotations for each cell. For each cluster, we defined me-

dian expression for each gene across all cells in that cluster. Then

for each cluster, we quantified the overrepresentation of our gene

list in ranked genes for this cluster via an enrichment p value

computed by the fgsea40 R package v.1.4.1 implemented in R 3.4.3.
Results

We systematically integrated lipid GWAS results12 with

multiple layers of functional genomic data from diverse tis-

sues and cell types to understand regulatory mechanisms

at lipid-associated loci (Figure 1). Specifically, we overlaid

GWAS loci with eQTL and chromatin-chromatin
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Figure 2. Overlap between eQTL colocalized genes and Capture-C prioritized genes, and their enrichments in known lipid-associ-
ated genes
(A) Numbers of genes identified by two approaches: eQTL colocalization (Coloc) and promoter Capture-C interaction (CapC). Capture-C
interactions restricted to genes expressed in the tissue of interest (or in the union of adipose and liver for ‘‘all tissues’’) are shaded.
(B) Overlap between two list of prioritized genes (left: Capture-C prioritized genes; right: eQTL colocalized genes) with four external sets
of genes previously associated with lipid biology (MGI knockout genes, ClinVar lipidemia-associated genes, genes implicated in rare
burden of lipids, and genes from a lipid TWAS). Dashed lines represent enrichments using only genes expressed in the liver.
(C) Enrichment in overlap between eQTL colocalized genes and Capture-C prioritized genes against what is expected by chance,
assuming both gene sets are independent.
Dashed lines represent genes expressed in the tissue of interest (or in the union of adipose or liver for ‘‘all’’). Enrichment estimates and
95% confidence intervals shown in (B) and (C) are based on the Fisher exact test.
(D) Fraction of colocalized loci that point to a single candidate genewhen using eQTL data alone or using both eQTL andCapture-C data.
interactions to identify causal genes. We assessed poly-

genic enrichments of tissue-specific histonemarks to prior-

itize relevant tissues and examined GWAS loci at transcrip-

tion factor (TF) binding sites to detect lipid-relevant TFs.

Finally, we combined all these layers to prioritize func-

tional variants at GWAS loci, providing a holistic view of

gene regulation at lipid loci in relevant tissue and cell

types.

Colocalization with eQTLs identifies candidate lipid-

relevant genes

First, we identified shared association signals between lipid

levels and expression of nearby genes, since most GWAS

signals are presumed to influence complex traits through

impact on gene expression.41 To do so, we tested for coloc-

alization of each significant lipid GWAS signal with signif-

icant cis-eQTL data across 49 human tissues from the GTEx

consortium.8 The significant GWAS signals were 1,750 loci

reaching genome-wide significance and corrected for

shadow signals in our multi-ancestry meta-analysis for at

least one of five lipid traits. Credible set sizes ranged from

1 to 417 variants at the 1,750 examined loci, with amedian

size of 5 variants per credible set.

Second, we restricted our analysis to loci most likely

mediated through regulatory mechanisms as opposed to

coding variation. Specifically, we excluded all loci with

credible sets containing at least one missense variant

(369 of 1,750 loci, 21% of credible sets). Of the remaining

1,381 GWAS loci, 696 significantly colocalized with eQTLs

(the ratio of posterior probability of a shared signal to the

posterior probability of two signals being>0.919) in at least

one of 49 tissues for at least one lipid phenotype. This re-

sulted in 1,076 colocalized eGenes ranging from 1 to 16
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genes per locus (Figure 2A and Table S1). Since with

eQTL data alone it is difficult to disentangle a single func-

tional gene from multiple functional (and likely coregu-

lated) genes at a locus,42 we performed all downstream an-

alyses with all 1,076 colocalized genes, to further prioritize

functional genes at loci with multiple eGenes.

Since lipid-associated genetic variants are often enriched

in the liver and adipose,43,44 we repeated the colocalization

analysis on eQTLs only from liver or adipose. Compared to

the 1,076 colocalized eGenes identified from all 49 tissues,

the liver- and adipose-only analysis identified 119 and 225,

respectively (Figure 2A). The reduced discovery of colocal-

ized eGenes in the liver- and adipose-only analysis is likely

due to the small sample sizes of liver (n¼ 208) and adipose

(n ¼ 581) in GTEx v8 (Figure S1). Leveraging the large de-

gree of tissue sharing in eQTLs,19,45 our cross-tissue coloc-

alization analysis enhanced the discovery power through

the collectively large sample size across all 49 tissues (n ¼
15,201). For example, several well-documented lipid-rele-

vant genes such as PPARA46 and LPL47 were not identified

in the liver- or adipose-only analysis but were identified as

significant in our cross-tissue analysis.

To acquire additional functional insights into the 1,076

colocalized genes, we assessed their enrichments across ex-

isting biological and clinical gene sets (Figure 2B, Tables S2

and S3). Colocalized genes showed enrichments in (1) 20

KEGG pathways30 at FDR 5%, including known lipid-

related processes such as cholesterol metabolism, PPAR

signaling, and bile secretion; (2) 33 Mendelian genes

from ClinVar32 associated with lipid-related ICD10 codes

(11.61-fold enrichment, p ¼ 2.08 3 10�6, including

APOB, LPL, and APOE), suggesting the shared genetic basis

of Mendelian and complex lipid phenotypes;48 (3) 35
ust 4, 2022



genes with rare-variant burden for lipid phenotypes in a

recent multi-ancestry analysis33 (30.82-fold enrichment,

p ¼ 1.77 3 10�16, including APOB, LPL, LIPG, and

ANGPTL4), confirming shared mechanisms of rare and

common variation underlying lipid traits;49 (4) genes

implicated by cholesterol or lipidemia phenotypes in

mouse knockouts (3.92-fold enrichment, p ¼ 2.18e�20),

suggesting the shared genetic basis of lipid traits between

human and mouse.50 Colocalized genes also showed

enrichment with genes implicated in TWAS (Table S4)

run on the same GWAS and eQTL summary statistics

(20.14-fold enrichment, p < 2.22e�308). These enrich-

ment results demonstrate the biological relevance of candi-

date functional genes prioritized by our approach.

Chromatin-chromatin interactions shortlist eQTL-based

colocalization

Our eQTL-based colocalization analysis uses a linear

sequence of DNA and ignores physical interaction between

non-adjacent DNA segments, another regulatory layer un-

derlying complex human traits.51 To add this layer to our

analysis, we generated Capture-C data from HepG2 liver

carcinoma cells (HepG2.1) and hepatocyte-like cells (HLC)

derived from differentiating iPSCs,22 as well as publicly

available Capture-C datasets from HepG221 (HepG2.2)

and white adipocytes.23 Based on the Capture-C data, we

defined an interaction between a GWAS locus and a gene

as a significant interaction between the bait end (promoter)

for this gene and the interacting end that contains a variant

in the credible set for this GWAS locus. In total, 1,079 of

1,750 GWAS loci had at least one variant in the credible

set with a physical interaction with a gene promoter and

3,543 of 26,621 genes with promoter-interactions had pro-

moters physically interacting with at least one GWAS cred-

ible set variant (Figure 2A and Table S5).

Unlike eQTL-colocalized genes, genes interacting with

GWAS credible sets were not significantly enriched in

lipid-relevant KEGG pathways (Table S2) and lipid-related

genes from ClinVar (Figure 2B and Table S3). These genes

were significantly enriched in genes with rare-variant lipid

associations (5.36-fold enrichment, p ¼ 2.8 3 10�5), genes

with lipid-relatedmouse knockouts (1.43-fold enrichment,

p ¼ 2.8 3 10�4), and TWAS-prioritized genes (5.05-fold

enrichment, p ¼ 2.5 3 10�288), but their enrichments

were consistently lower than enrichments of eQTL-colo-

calized genes nonetheless (Figure 2B and Table S3).

Since genes expressed in the liver are most likely to har-

bor genuine lipid-relevant variant-gene interactions, we

repeated the enrichment analyses above restricting both

eQTL colocalization and Capture-C interactions to genes

expressed in the liver (>0.1 TPM and R6 reads in at least

20% of GTEx liver samples). Reassuringly, we observed

higher enrichments for each combination of two methods

(eQTL, Capture-C) and four databases (ClinVar, Rare

Variant, Mouse Knockout, TWAS) when we restricted our

analyses to genes expressed in the liver (Figure 2B and

Table S3). For the same database, we observed higher en-
The American
richments in eQTL colocalized genes than Capture-C prior-

itized genes, consistent with the results based on all genes.

Genes physically interacting with GWAS loci significantly

overlapped with eQTL colocalized genes despite their

reduced enrichments in lipid-related gene sets. Of 1,079

credible sets with promoter interactions, 224 also colocal-

ized with eQTLs for the same gene. Across 49 eQTL tissues

and four Capture-C cell lines, 233 genes were implicated

in both eQTL colocalizations and Capture-C interactions

(Table S6), representing an enrichment of 3-fold compared

to random chance (Figure 2C, p ¼ 3.11 3 10�38). Because

our Capture-C data came from liver and adipose only, we

observed a stronger enrichment in overlap when restricting

genes expressed in the liver or adipose (4.5-fold enrichment,

p¼ 2.893 10�65).We observed similar enrichment patterns

when analyzing liver and adipose Capture-C data separately

(Figure 2C). Together, the enrichments in overlap suggest

that, despite a large number of genes identified by

Capture-C (Figure 2A), many of them are likely to harbor

functional interactions with GWAS loci.

Chromatin-chromatin interactions helped shortlist

functional genes from eQTL colocalization. Among 224

loci with concordant eQTL colocalizations and Capture-C

interactions across all tissues, only 39% (88) mapped to a

single gene using eQTL data alone, whereas adding

Capture-C information increased this fraction to 80%

(180). We observed the same trend in the adipose-only

and liver-only analysis: 80% (12/15) and 79% (26/33) of

loci mapped to a single gene using adipose and liver eQTLs

alone, compared to 93% (14/15) and 97% (32/33) after the

integration of adipose-only and liver-only Capture-C data,

respectively (Figure 2D). These results showcase the poten-

tial value of combining eQTLs with physical chromatin in-

teractions to prioritize functional genes at GWAS loci.

Since eQTLs are likely to reside in the same topologically

associated domain (TAD) as the genes they regulate,52 we

examined TADs from an independent human liver dataset28

at lipid GWAS loci with eQTL colocalizations to confirm

GWAS variant-target gene colocalization within the same

TAD. Of eQTL-GWAS colocalizations in which the sentinel

variant resided within a TAD, 84.8% (1,040 out of 1,235)

had the colocalized gene residing in the same TAD

(p < 0.001 with 1,000 permutations). When we restricted

to all colocalizations concordant with Capture-C data in

any cell type, 96.9% (252 out of 260) of gene-variant pairs

fell in the same TAD. This fraction further increased to

100% (33 out of 33) when we repeated the analysis using

liver eQTLs and liver Capture-C interactions only. These re-

sults add to the existing evidence for TAD boundaries being

regulatory insulators in the cell53 and confirm our integra-

tion of chromatin interactions with eQTL colocalizations

as an effective strategy to hone in on functional genes.

Tissue-specific enrichment of GWAS signals

differentiates lipid traits

Regulatory variants often affect complex traits in a tissue-

specific manner,6 as shown in our eQTL colocalization
Journal of Human Genetics 109, 1366–1387, August 4, 2022 1377
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Figure 3. Tissue relevance of lipid-associated loci
Partitioning heritability of lipid GWAS summary statistics on gene expression (A) and active chromatin marks (B) across tissues. Each
plotted point represents a tested dataset for enrichment of heritability, with larger dots representing datasets with enrichment p
value < 0.05. Each color represents a tissue group (Table S7), and the y-axis represents �log10 p value for enrichment of heritability.
analysis. Specifically, by computing the ratio of the num-

ber of colocalizations in a tissue to eQTL sample size in

that tissue, we found that the liver was universally en-

riched for colocalized eGenes with respect to sample size

across all lipid traits whereas adipose was selectively en-

riched in HDL and TG only (Figure S1). Motivated by these

findings, we leveraged systematic approaches and addi-

tional data to identify relevant tissues and cell types for

each lipid trait.

We implemented stratified LD score regression (S-

LDSC),36 a polygenic approach not restricted to genome-

wide significant variants, on tissue-specific transcriptomic

and epigenomic annotations across 205 datasets from

more than 170 tissues and cell types, to identify relevant

tissues for each lipid trait. Consistent with previous

studies43,44 and our eQTL-based analysis, liver-related tis-

sues (Tables S7 and S8) showed strong enrichments across

all lipid traits (S-LDSC enrichment p values ranging from

0.001 in TG to 0.0001 in TC), for both expression

(Figure 3A) and chromatin annotations (Figure 3B). This

result was confirmed by analysis using two other ap-

proaches: DEPICT54 (Figure S2 and Table S9) and RSS-

NET55 (Table S10). To assess the robustness of our S-LDSC

results based on multi-ancestry GWASs, we applied

S-LDSC to population-specific GWASs in European and

East Asian ancestry participants together with popula-
1378 The American Journal of Human Genetics 109, 1366–1387, Aug
tion-specific LD scores and obtained similar results

(Table S11, Figures S3 and S4).

The S-LDSC results also highlighted tissues selectively en-

riched in certain lipid traits as shown in the eQTL-based

analysis. The most enriched category for HDL using chro-

matin annotation is adipose H3K4me3 (p ¼ 7.6 3 10�4);

for TG, enrichment in liver-related tissues (p ¼
1.2 3 10�3) is similar to enrichment in adipose (p ¼
2.7 3 10�3). For LDL, TC, and nonHDL, enrichment

p values for the liver were much more significant than for

all other tissues including adipose (Figure 3B). We observed

the same pattern in S-LDSC results based on gene expres-

sion (Figure 3A). This finding is consistent with the known

influence of adipose onplasmaHDL levels,56 and the role of

adipose asTGdeposits.57 These resultswere corroboratedby

eQTL colocalizations stratified by phenotype (Figure S1)

and DEPICT analysis on gene expression54 (Figure S2 and

Table S9). Together, these results confirm the liver as a tissue

of action for all five lipid traits and highlight the additional

role of adipose primarily in HDL and TG.

Given the importance of the liver and adipose in modu-

lating lipid levels, we further identified the relevant cell

types within these tissues. Using existing single-cell data

from adipose and liver,39 we performed gene set enrich-

ment analysis58 to identify cell-type clusters enriched for

genes with eQTL colocalizations for any lipid trait. Out
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Figure 4. TF enrichment identified by GREGOR and S-LDSC
(A) Number of TFs enriched in the GREGOR analysis on GWAS loci for each of the five lipid traits.
(B) Number of TFs enriched in S-LDSC analysis on each of the five lipid traits.
(C) TF RXRA binds to the promoters of 26 colocalized genes (18 protein-coding). Colors represent the subsets of lipid phenotypes with
colocalization. Larger node sizes represent smaller GWAS p values of colocalized loci.
of 11 identified cell types in 20 clusters in the liver, only

hepatocytes were enriched at FDR-adjusted p < 0.05

(Figure S5 and Table S12), consistent with previous re-

sults.21 In adipose, only adipocyte clusters and macro-

phage-monocyte clusters showed suggestive enrichment

(nominal p < 0.05) in colocalized genes (Figure S6 and

Table S12). Of note, the enrichment in adipocytes was sig-

nificant when we restricted this analysis to genes that were

colocalized with HDL and TG (FDR-corrected p < 0.05),

consistent with the selective enrichments of adipose in

HDL and TG (but not the other lipid traits) from our

S-LDSC analysis. Evaluations at cellular resolution are

required to understand the cell-type-specific mechanisms

underlying lipid GWAS loci, but our results could form a

useful basis for future studies.

Overlapping GWAS signals with binding sites highlights

lipid-relevant TFs

TFs have been implicated as a key mediator of linking ge-

netic variation to complex traits.59 To understand lipid

GWASs in the context of TF activity, we assessed enrich-

ment of genome-wide significant variants at TF binding

sites using GREGOR38 and performed polygenic enrich-

ment analysis of TF binding sites using S-LDSC. Because

TFs were not comprehensively assayed in most cell lines

(Figure S7), we used all cell types in our primary analysis

presented below.

Using ChIP-seq data from 161 TFs across 91 cell types

from the ENCODE project,7 70.7% of lipid credible sets

overlapped with at least one TF binding site. Using

GREGOR,38 we identified 137 TFs whose binding sites

were significantly enriched in GWAS lead SNPs for at

least one lipid phenotype (enrichment >2; FDR adjusted

p value < 0.05; Figure 4A and Table S13). We obtained

similar results when repeating the GREGOR analysis on

TF binding sites derived from HepG2 only (Table S14). To
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assess the impact of GWAS power on TF enrichments, we

repeated the GREGOR analysis on the same TF binding

sites using a previous version of lipid GWAS, and we iden-

tified 54 enriched TFs (Table S15). Between the two ver-

sions of lipid GWASs, the total sample size and number

of GWAS loci increased 8.7-fold (from 188,577 to

1,650,000) and 11-fold (from 156 to 1,750), respectively,

but the number of enriched TFs only increased 2.5-fold

(from 54 to 137), suggesting that the large number of en-

riched TFs is unlikely driven by the GWAS power alone.

Among these 137 enriched TFs, 69 of them (50%)

showed significant enrichments across all five lipid pheno-

types, suggesting a potential core regulatory circuit shared

by all lipid traits (Figure 4A and Table S13). The TF with the

strongest enrichment in all phenotypes was ESRRA (estro-

gen-related receptor alpha), a nuclear receptor active in

metabolic tissues;60 ESRRA has been implicated in adipo-

genesis and lipidmetabolism, and ESRRA-null mice display

an increase in fat mass and obesity.60

The GREGOR analysis also highlighted 68 TFs signifi-

cantly enriched in specific subsets of (but not all five) lipid

phenotypes (Figure 4A and Table S13). For example, we

found 4 TFs (FOXM1, PBX3, ZKSCAN1, ZEB1) enriched

in HDL and TG only, 4 TFs (EZH2, NFE2, NFATC1,

KDM5A) enriched in HDL only, and 11 TFs (FOSL1, IRF3,

JUN, MEF2C, NANOG, PRDM1, RUNX3, SIRT6, SMC3,

STAT3, ZNF217) enriched in TG only. Of these TFs, the cen-

tral role of ZEB1 in adiposity61 and fat cell differentiation

has been demonstrated.62 These TF-centric findings

corroborate the selective enrichments of adipose in HDL

and TG (but not the other lipid traits) identified in our pre-

vious tissue prioritization analyses.

We also performed polygenic enrichment analysis of TF

binding sites using S-LDSC (Figure 4B and Table S16),

which differed from GREGOR analysis by looking at not

only the genome-wide significant associations but also
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the polygenic signal without GWAS p value cutoff. On the

same 161 ENCODE TFs, this polygenic analysis identified

25 TFs whose binding sites were significantly enriched in

heritability explained (nominal p < 0.05) for at least one

lipid phenotype; reassuringly, 24 of 25 TFs were also signif-

icant in the GREGOR analysis. As a sensitivity check, we

repeated the S-LDSC analysis on TF binding sites derived

from HepG2 only, and we obtained similar results

(Table S17).

Among 24 enriched TFs identified by both GREGOR and

S-LDSC, eight were significantly enriched in all five lipid

traits (CEBPB, CEBPD, FOXA2, HDAC2, HNF4G, NFYA,

RXRA, SP1). RXRA (retinoid X receptor alpha) is encoded

by a colocalized gene (RXRA) near a GWAS hit

(chr9:137,268,682). RXRA is a ligand-activated transcrip-

tion factor that forms heterodimers with other receptors

(including PPARG) and is involved in lipid metabolism.63

Moreover, 145 lipid GWAS loci overlap RXRA binding

peaks, and RXRA binds to the promoters of 26 colocalized

genes (18 of which are protein-coding) (Figure 4C and

Table S18), suggesting that the GWAS variants might affect

lipids (partially) through affecting the binding activity of

RXRA. While RXRA has been previously implicated,64 our

study demonstrates its role in lipid biology through its reg-

ulatory influence on other lipid-associated genes.

Multi-layer functional integration reveals regulatory

mechanisms at GWAS loci

Motivated by our finding that integrating chromatin

interaction shortlisted eQTL colocalizations, we further

brought together multiple lines of functional evidence

at each GWAS locus for mechanistic inference. We

started with the list of genes with evidence for both

eQTL colocalization and Capture-C interactions in the

liver or adipose. We next annotated each variant in the

95% credible set with various indicators of regulatory

function, including its open chromatin status in liver20

or adipose-related cell types,65 its proximity to a pro-

moter or an enhancer,66 and its RegulomeDB regulation

probability;67 see Table S19 for the complete list of anno-

tations used. To account for complexities of regulatory

mechanisms and limitations of functional datasets, we

combined evidence across these datasets to prioritize var-

iants at GWAS loci (Figure 5A). Specifically, we prioritized

variants with at least three independent lines of func-

tional evidence (chromatin openness, physically interac-

tion with target genes, and promoter/enhancer status) in

the liver or adipose, with at least two being in the same

tissue with colocalization with the target gene, and with

a RegulomeDB score >0.5. Applying this simple proced-

ure to lipid GWASs we prioritized 28 candidate loci

with the strongest multi-layer evidence, 13 of which

point to a single functional variant (Table 1). We have

also made the full results of variant prioritization freely

available (web resources). Below we describe two exam-

ples to highlight key features of this multi-layer integra-

tion framework.
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RRBP1 (ribosomal binding protein 1) could be identified

from eQTL colocalization alone, but our multi-layer inte-

gration approach strengthened the conclusion via conver-

gent evidence from various sources (Figure 5B). The RRBP1

eQTL signals in the liver colocalize with LDL, TC, and

nonHDL GWAS signals. The credible set at this locus con-

tains a single lead variant (chr20:17,844,684). The ‘‘T’’

allele of this lead variant decreases RRBP1 expression levels

and increases LDL, TC, and nonHDL levels. This lead

variant is in open chromatin in HLC and adipose and

physically interacts with the RRBP1 promoter (250 kb

away) in adipose. All these data consistently point to

RRBP1 as the functional gene underlying this locus.

RRBP1 specifically tethers the endoplasmic reticulum to

the mitochondria in the liver (an interaction that is en-

riched in hepatocytes) and regulates very low-density lipo-

protein levels.68 Rare variants in RRBP1 are associated with

LDL in humans69 and silencing RRBP1 in liver affects lipid

homeostasis in mice.68

CREBRF (CREB3 regulatory factor) further demonstrates

the power of our multi-layer integration framework in

prioritizing functional variants (Figure 5C). The eQTL sig-

nals of CREBRF colocalized with a GWAS locus for HDL

with 30 candidate variants. In contrast, our multi-layer

approach identified a single candidate variant (chr5:

172,566,698) at this locus that physically interacts with

the CREBRF promoter in adipose and is predicted to be a

regulatory element (RegulomeDB score¼ 0.91). Consistent

with the index variant (chr5:172,591,337), the allele ‘‘A’’ at

this functional variant increased HDL levels and increased

CREBRF expression in adipose. Missense variants in

CREBRF have been linked to body mass index, and the

gene has been linked to obesity risk in Samoans.70

Finally, to compare the power of functional fine-map-

ping withmulti-ancestry fine-mapping, we applied our pri-

oritization rule to credible sets derived from European-only

meta-analysis. The 111 variants prioritized by our rule

described above (including multiple variants in the same

credible set) were all found in the multi-ancestry credible

sets, representing a 3.7-fold enrichment (p < 1 3 10�4

based on 10,000 permutations randomly sampling vari-

ants from the European-only credible sets). This conver-

gence of complementary approaches to the same smaller

set of fine-mapped variants highlights the power of

multi-ancestry datasets as an approach to narrow in on

functional variants.
Discussion

Here we integrate the largest multi-ancestry lipid GWAS to

date with a wide array of functional genomic resources to

understand how noncoding genetic variation affects lipids

through gene regulation. Specifically, we identify 1,076

genes whose eQTL signals colocalize with lipid GWAS sig-

nals and demonstrate how physical chromatin interaction

can improve standard eQTL-based colocalization. We
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Figure 5. Multi-layer functional integration to prioritize variants at GWAS loci
(A) Variant annotation and prioritization scheme at each GWAS credible set.
(B) Evidence for RRBP1 from functional genomics data. The LDL GWAS locus at this region (first row) is an eQTL for RRBP1 in the liver
(second row). Variants in the credible set of this locus interact with the gene promoter in both adipose and HepG2 Capture-C data (third
row). The interacting variant is also in an open chromatin peak in three liver-related cell types (fourth row).
(C) Multiple sources of functional genomics data support CREBRF as a gene contributing to HDL levels. The HDL GWAS locus at this
region (first row) is an eQTL for CREBRF in adipose (second row). Variants in the credible set at this locus interact with the CREBRF pro-
moter in adipose (third row). The interacting variant is also in open chromatin in liver-related cell types (fourth row).
assess tissue-specific enrichments of lipid GWAS signals

and demonstrate the selective importance of adipose in

HDL and triglyceride biology. We examine binding site en-

richments of 161 TFs in lipid GWASs and expand our un-

derstanding of lipid GWAS loci (e.g., RXRA) in the context

of TF activity. Finally, we build a simple and interpretable

prioritization framework that automatically combines

multiple lines of evidence from orthogonal datasets, pin-

pointing a single functional variant at each of 13 lipid-

associated loci (e.g., RRBP1 and CREBRF). While there are

studies that interpret lipid GWAS associations,21,71,72 the

size of our multi-ancestry GWAS and multi-layer func-

tional integration represent a comprehensive effort and

an important step forward in this direction.

Our multi-layer analysis has two key strengths. First,

despite a large array of functional genomic resources being

embedded, our analysis produces results with high consis-

tency. For example, the selective enrichment of adipose in

HDL and TG identified by S-LDSC is confirmed by our

eQTL-based colocalization and TF binding site overlap.

Another example of consistency is the multi-layer prioriti-

zation of RRBP1, which can be identified from eQTL-based
The American
colocalization alone and it is further validated by chro-

matin accessibility and interaction. Such convergent evi-

dence from various sources improves the confidence of

our findings. Second, our analysis highlights that

combining multiple layers of regulatory information can

improve sensitivity to prioritize functional genes and vari-

ants. For example, we refined eQTL colocalized genes

(1,076) to a smaller set of functional genes (233) through

integration with promoter Capture-C data. Another

example of sensitivity is CREBRF, where eQTL-based coloc-

alization implicates 30 candidate variants and adding

other regulatory layers points to a single functional

variant. Moving forward, we expect these two features

will serve as useful guidelines for future integrative

genomic analyses of other traits.

Our results rely on thebreadth and accuracyof functional

genomic datasets used in our analyses. First, unlike our lipid

GWASs, current functional datasets73 are limited both in

sample size and ancestral diversity, which can affect discov-

ery and replication of regulatory mechanisms in diverse

populations. Second, some functional datasets are gener-

ated at limited resolution. For example, our colocalizations
Journal of Human Genetics 109, 1366–1387, August 4, 2022 1381



Table 1. Thirteen prioritized loci with highest confidence of a single functional variant in the credible set

Gene Name Tissue Sentinel Prioritized Var Open CapC Enhancer Prom-oter RegDB

CEP68 adipose 2:65284231 65279414 liver liver none ad 0.5896

TIPARP adipose 3:156797941 156795408 both both ad liver 0.705

CREBRF adipose 5:172591337 172566698 liver ad none both 0.9124

PALM2 adipose 9:112556911 112556911 both ad both none 0.6091

MEGF9 adipose 9:123481206 123421556 liver ad none liver 0.9933

GBF1 liver 10:104142294 104107191 ad ad none both 0.705

MICAL2 liver 11:12071855 12221016 liver liver none liver 0.6018

ACP2 liver 11:47278917 47276350 ad liver liver ad 0.6091

PTPRJ adipose 11:48021778 48011180 liver ad liver ad 0.8797

NFATC2IP adipose 16:28899411 28883327 liver liver none both 0.6091

HELZ liver 17:65109591 65156919 liver liver none both 0.60906

FAM210A liver 18:13725674 13725674 liver liver none both 0.7571

RRBP1 liver 20:17844684 17844684 both ad both none 0.6091

The ‘‘sentinel’’ column represents the lead variant at the locus. The ‘‘prioritized var’’ column represents the prioritized variant in the credible set. Columns 5–8 repre-
sent overlap of the functional variant with open chromatin (‘‘open’’), capture-C (‘‘CapC’’) interactions with the candidate gene, enhancer and promoter marks from
Roadmap in liver (‘‘liver’’), adipose (‘‘ad’’), both, or none of these tissues. The ‘‘RegDB’’ column represents the RegulomeDB score of the prioritized variant.
are based on eQTLs from bulk tissue RNA-seq,8,74 which

may miss detailed cell types and biological processes in

which lipid-associated SNPs regulate gene expression.

Third, some functional datasets are not available across

the full spectrum of human tissues and cell types. One

example is that our chromatin-chromatin interaction anal-

ysis examines only a few cell types in two known lipid-

related tissues (liver and adipose), producing results that

may be biased toward known lipid biology. Another

example is that ENCODETFChIP-seq data are not available

in adipose-related cell lines. Fourth, our results are validated

computationally but not experimentally. That said, our re-

sults provide a high-confidence list of regulatory mecha-

nisms at lipid GWAS loci, forming a useful basis for future

experiments. As more comprehensive and accurate func-

tional genomic resources are becoming publicly available

in diverse cellular contexts and ancestry groups, the resolu-

tion and power of integrative analyses like ours will be

markedly increased.

Other limitations of this study stem from computational

methods embedded in our framework. First, the colocaliza-

tion approach coloc assumes one causal variant per locus,

whereas recent studies suggest extensive allelic heteroge-

neity75 consistent with a model of a milieu of related tran-

scription factors binding within a single locus. Accounting

for allelic heterogeneity in summary statistics-based coloc-

alization typically requires modeling multiple correlated

SNPs through LD matrix,76 which is computationally

intensive in large-scale analyses derived from many co-

horts with diverse ancestries, like the multi-ancestry

GWASs examined here. Second, due to restricted access

to individual genotypes of 201 cohorts, we cannot produce

multi-ancestry LD scores within GLGC but have to use Eu-

ropean-based LD scores in all S-LDSC analyses. This
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approach, though less rigorous in principle, provides

robust results in practice (as confirmed by our ancestry-

specific analysis), largely because 79% of cohorts in

GLGC are of European descent.12 That said, we caution

that the same approach might fall short in ancestrally

diverse studies with few European individuals.77 Third,

our multi-layer variant prioritization framework is built

on a series of simple rules that are easy to implement on

large datasets. This approach could possibly be formalized

as statistical models (e.g., priors in Bayesian methods55),

but our approach simplifies computation and allows for

scalability of the underlying framework. Despite the tech-

nical limitations, our approach here can serve as a useful

benchmark for future development of methods with

improved statistical rigor and computation efficiency.

In summary, mapping noncoding genetic variation of

complex traits to biological functions can benefit greatly

from thorough integration of multiple layers of functional

genomics, as demonstrated in the present study. Although

tested on lipids only, our integrative framework is straight-

forward to implement more broadly on many other phe-

notypes, yielding functional insights of heritable traits

and diseases in humans.
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Web resources

Adipose single-cell data, https://singlecell.broadinstitute.org/

single_cell/study/SCP133/human-adipose-svf-single-cell

bedtools, https://bedtools.readthedocs.io/en/latest/

biomaRt, https://bioconductor.org/packages/release/bioc/html/

biomaRt.html

Browser of noncoding variant prioritization, http://csg.sph.

umich.edu/willer/public/glgc-lipids2021/variant_prioritization.

html

CHiCAGO, https://www.bioconductor.org/packages/release/bioc/

html/Chicago.html

ClinVar, https://www.ncbi.nlm.nih.gov/clinvar/

ClusterProfiler, https://guangchuangyu.github.io/clusterProfiler

coloc, https://cran.r-project.org/web/packages/coloc

DEPICT, https://data.broadinstitute.org/mpg/depict

East Asian LD scores and related annotations, http://jenger.riken.

jp/en/data

ENCODE ChIP-Seq data, https://hgdownload.cse.ucsc.edu/

goldenpath/hg19/encodeDCC/wgEncodeRegTfbsClustered/

wgEncodeRegTfbsClusteredWithCellsV3.bed.gz

European LD scores and related annotations, https://data.

broadinstitute.org/alkesgroup/LDSCORE/

fgsea, http://bioconductor.org/packages/release/bioc/html/fgsea.

html

GenomicRanges, https://bioconductor.org/packages/release/bioc/

html/GenomicRanges.html

GLGC GWAS summary statistics and credible sets, http://csg.sph.

umich.edu/willer/public/glgc-lipids2021/

GREGOR, https://genome.sph.umich.edu/wiki/GREGOR

GTEx v8 summary statistics, https://www.gtexportal.org/home/

datasets

HepG2 Capture-C data (Chesi et al.20), https://www.ebi.ac.uk/

arrayexpress/experiments/E-MTAB-7144/

HepG2 Capture-C data (Selvarajan et al.21), https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc¼GSE157306

HiCUP, https://www.bioinformatics.babraham.ac.uk/projects/

hicup/

Human liver Hi-C data, https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc¼GSE58752
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Human white adipocyte Capture-C data, https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc¼GSE110619

LDSC software, https://github.com/bulik/ldsc

liftOver, https://genome.ucsc.edu/cgi-bin/hgLiftOver

Liver single-cell data, http://shiny.baderlab.org/HumanLiverAtlas/

MGI, http://www.informatics.jax.org/downloads/reports/index.

html#pheno

Open chromatin data from HepG2, https://www.omicsdi.org/

dataset/arrayexpress-repository/E-MTAB-7543

Open chromatin data from adipose, https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc¼GSE110734

Roadmap epigenomic data (promoters and enhancer annotation),

https://egg2.wustl.edu/roadmap/data/byFileType/chromhmm

Segmentations/ChmmModels/coreMarks/jointModel/final/

RegulomeDB, https://regulomedb.org/regulome-search/

RSS-NET, https://github.com/SUwonglab/rss-net

S-PrediXcan, https://github.com/hakyimlab/MetaXcan
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