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Abstract 

Background: Genetic variants within nearly 1000 loci are known to contribute to 
modulation of blood lipid levels. However, the biological pathways underlying these 
associations are frequently unknown, limiting understanding of these findings and 
hindering downstream translational efforts such as drug target discovery.

Results: To expand our understanding of the underlying biological pathways and 
mechanisms controlling blood lipid levels, we leverage a large multi‑ancestry meta‑
analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid 
associations using six gene prediction approaches. Using phenome‑wide association 
(PheWAS) scans, we identify relationships of genetically predicted lipid levels to other 
diseases and conditions. We confirm known pleiotropic associations with cardiovas‑
cular phenotypes and determine novel associations, notably with cholelithiasis risk. 
We perform sex‑stratified GWAS meta‑analysis of lipid levels and show that 3–5% of 
autosomal lipid‑associated loci demonstrate sex‑biased effects. Finally, we report 21 
novel lipid loci identified on the X chromosome. Many of the sex‑biased autosomal and 
X chromosome lipid loci show pleiotropic associations with sex hormones, emphasiz‑
ing the role of hormone regulation in lipid metabolism.

Conclusions: Taken together, our findings provide insights into the biological mecha‑
nisms through which associated variants lead to altered lipid levels and potentially 
cardiovascular disease risk.

Keywords: Cholesterol, Lipids, Genetics, Genome‑wide association study, GWAS

Background
Abnormal blood lipid levels are a major cause of cardiovascular disease [1], the lead-
ing cause of morbidity and mortality worldwide [2]. Conventional blood lipid measures, 
low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), 
high-density lipoprotein cholesterol (HDL-C), and nonHDL-C (TC – HDL-C), are com-
monly used in clinical practice to identify individuals at high risk for cardiovascular 
events. Several treatments for reducing LDL-C, including statins, ezetimibe, and PCSK9 
inhibitors [3], also reduce the risk of developing cardiovascular disease.

Genome-wide association studies (GWAS) for blood lipids have identified nearly 
1000 associated genetic loci to date [4–23], including our recent multi-ancestry GWAS 
meta-analysis in 1.65 M individuals [24]. The latter focused on the gains from the multi-
ancestry meta-analysis relative to the single-ancestry results, in terms of number of loci, 
fine-mapping, and polygenic score (PGS) transferability. However, a challenge in the 
field is that the underlying gene and biological pathways is often unknown for GWAS 
loci. Within lipid GWAS, prior fine-mapping studies combined with functional follow-
up have successfully identified causal genes with high confidence for only a handful of 
associated GWAS loci, including SORT1 [25], TM6SF2 [12], and ANGPTL3 [26], among 
others. Highly sophisticated methods are emerging to prioritize causal genes in well-
powered GWAS studies, such as the Data-driven Expression-Prioritized Integration 
for Complex Traits [27] (DEPICT) and the Polygenic Priority Score [28] (PoPS), that 
take into account genome-wide properties of associated loci and larger sets of associ-
ated loci are beneficial. These methods can be combined with algorithms that integrate 
expression data such as transcriptome-wide association studies (TWAS) and compre-
hensive experimental data sets such as mouse gene knockouts. Gene sets enriched for 
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causal genes will enhance our ability to unravel the biological pathways underlying these 
associations and there is growing interest in using a combination of gene prioritization 
methods to provide compelling evidence for putative causal genes [29].

In parallel, the linkage of electronic health records with genetic data in large-scale 
population studies and patient biobanks allows for the systematic exploration of pleiot-
ropy of lipid-associated alleles. While blood lipid levels have a well-documented causal 
effect on cardiovascular disease based on genetic association studies validated by rand-
omized controlled trials [30–32], genetic pleiotropic associations might exist for other 
conditions. Unraveling such pleiotropy may yield new biological insights by revealing 
previously unrecognized connections between blood lipids and both cardiovascular 
and non-cardiovascular diseases. Phenome-wide association scans (PheWAS) adopt an 
agnostic approach to test for pleiotropic associations between genetic factors and a wide 
range of phenotypes [33]. Such knowledge may allow for the identification of lipid levels 
as novel diagnostic biomarkers, the repurposing of drugs, and the prevention of adverse 
drug events [34].

Finally, given empirical sex differences in blood lipid distributions, sex-specific genetic 
associations may yield novel biological insights. Pre-menopausal females have lower lev-
els of LDL-C than same-age males, and HDL-C levels are higher among females of all 
ages compared to males [35]. Lipid levels also show a greater estimated heritability in 
females compared with males [36], especially for LDL-C and TC (> 1.3-fold difference). 
Sexual dimorphism in lipid levels may be partly explained by X chromosome variants. 
Evidence from human X-linked abnormalities (like Turner or Klinefelter syndromes) 
suggests an important role of this chromosome in lipid metabolism [37]. This is further 
corroborated by the lipid and atherosclerosis profiles in the Four Core Genotypes mouse 
model [38], which comprises XX and XY gonadal males and XX and XY gonadal females. 
GWAS studies have traditionally understudied the X chromosome due to technical and 
analytical difficulties. A recent high coverage whole X chromosome sequencing study 
[39] prioritized CHRDL1 as a candidate causal lipid gene, suggesting with larger sample 
sizes we may be able to discover additional variation on the X chromosome associated 
with lipid levels.

In this study, we first prioritize genes at GWAS lipid loci through multiple in silico 
gene prediction algorithms and experimental data sources using the latest Global Lipids 
Genetics Consortium multi-ancestry meta-analysis [24]. We then identify novel disease 
associations related to lipid levels through PheWAS in two large biobanks using PGSs. 
Finally, we perform sex-stratified meta-analysis to compare the associations between 
males and females to identify genetic loci with sex-specific associations and GWAS 
meta-analysis of the X chromosome, to better understand lipid level differences between 
the sexes. Together, our results highlight biological mechanisms through which lipid-
associated variants lead to altered lipid levels.

Results
Identifying functional genes in lipid‑associated loci

In a GWAS meta-analysis of blood lipid levels from 1.65 million individuals (Additional 
file 1: Table S1) at 91 million genotyped and imputed genetic variants, we observed a 
total of 2286 genome-wide significant index variants associated with lipid levels at 923 
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loci (± 500 kb regions). This corresponded to 416 index variants associated with LDL-
C, 539 with HDL-C, 461 with TG, 487 with TC, and 383 with nonHDL-C. Uniquely, we 
observed 1750 variants associated with one or more lipid levels [24] (Additional file 2: 
Table S2).

We employed six approaches to identify candidate functional genes for all 2286 lipid 
associations. Our prioritization approaches include four locus-specific methods that 
are based on local information around the indexed variant: (1) the closest gene to the 
index variant, (2) genes with lipid-associated protein-altering variants, (3) colocalized 
expression quantitative trait loci (eQTL) genes, and (4) nearby genes prioritized by tran-
script-wide association studies (TWAS). We also used two genome-wide methods that 
leveraged genome-wide similarities of features: (1) gene-level Polygenic Priority Score 
(PoPS) [28] and (2) Data-driven Expression-Prioritized Integration for Complex Traits 
(DEPICT) [27]. We further combined the two genome-wide methods with the locus-
specific methods to increase the confidence in prioritized genes: (1) PoPS intersects with 
any locus-specific methods (PoPS +), and (2) DEPICT intersects with any locus-specific 
methods (DEPICT +) (Fig.  1). Since the genome-wide gene prioritization approaches 
can prioritize different genes for different lipid types at the same locus, we report the 
gene prioritization results for all 2286 lipid-variant associations (Additional file  2: 
Table S2, Additional file 3: Figure S1).

We took the genes prioritized by PoPS + and performed text mining to determine 
whether previous biological evidence supported these genes as playing a role in lipid lev-
els (Additional file  4: Table  S3, S4). PoPS + leverages both locus-specific and genome-
wide genetic signals to increase confidence level in prioritized genes [28]. In total, 882 
out of 2286 lipid associations were assigned to one potential causal gene based on 
PoPS + . We identified a group of 466 unique genes among the 882 lipid associations. 
We determined that 31 out of the 466 PoPS + genes have over 1000 lipid-related pub-
lications, 91 PoPS + genes have 100–999 lipid-related publications, 321 PoPS + genes 
have 1–99 lipid-related publications, and 23 PoPS + genes had no lipid-related publica-
tions retrieved by the text mining algorithm. These 23 genes could indicate novel genes 
related to lipid levels for future work or be due to incorrect gene prioritization for a 
small fraction of index variants. (Additional file 5: Table S4). We then randomly selected 
466 genes from 18,383 protein-coding genes using by the PoPS as the reference group 
to estimate the number of lipid-related publications we would expect to see by chance. 
A Mann–Whitney U test showed that there was a significant difference (W = 52,353, 
p-value < 2.2 x  10−16) between the set of genes identified by PoPS + compared to the ref-
erence set of 466 genes (Additional file 6: Figure S2). The median count of lipid-related 
publications was 19 for the PoPS + gene set compared with 2 lipid-related publications 
for genes in the reference set.

We performed a comprehensive lookup of all PoPS + prioritized lipid genes in the 
Therapeutic Target Database 2022 [24] and found 2092 drugs targeting at least one of our 
102 PoPS + prioritized lipid genes observed in the database (Additional file 7: Table S5). 
Among those 102 PoPS + genes, we identify known drug target genes including PCSK9 
druggable as subtilisin/kexin type 9 inhibitor, HMGCR  druggable as HMG-CoA reduc-
tase inhibitor, PDE3A druggable as phosphodiesterase 3A inhibitor (CILOSTAZOL), 
and NR1H4 as a bile acid receptor FXR agonist (URSODIOL). We also identify several 
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other potential drug targets [24] such as LIPG (lipase G) and NR1H3 (nuclear receptor 
subfamily 1 group H member 3), with relevant lipid biology. LIPG has phospholipase 
and triglyceride lipase activities and is a primary determinant of plasma HDL levels. 
NR1H3 has an important role in the regulation of cholesterol homeostasis, regulating 
cholesterol uptake through MYLIP-dependent ubiquitination of LDLR, VLDLR, and 
LRP8 that could be targeted as an LXR-alpha modulator.

Effects of protein‑altering lipid alleles with protective effects on CAD, T2D, and NAFLD

Coronary artery disease (CAD), type 2 diabetes (T2D), and non-alcoholic fatty liver dis-
ease (NAFLD) are typically characterized by dyslipidemias. We examined protein-alter-
ing alleles with favorable lipid profiles for their associations with CAD, T2D, and NAFLD 
to identify potential cardiovascular drug targets without off-target liver or diabetes 
effects. Of the 2286 lipid associations, we observed 166 coding index variants. Eight-
een coding variants with a protective lipid effect also had a protective effect for CAD 

Fig. 1 Schematic of multi‑method candidate gene mapping of indexed variants associated with blood 
lipid levels. We defined indexed variants within the GLGC GWAS summary statistics and performed two 
similarity‑based methods and four locus‑based methods to prioritize genes for each of the indexed variants
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or T2D (p-value < 0.001) and the lipid results colocalized with the CAD or T2D results, 
as appropriate, with a posterior probability of a shared causal variant > 0.8 (Table 1 and 
Additional file 8: Table S6). Six of these twenty variants had protective effects for both 
CAD and T2D, while nine were protective for CAD and three were protective for T2D 
(Table  1). Additionally, 269 noncoding alleles with a protective lipid effect also had a 
protective effect for CAD or T2D (p < 0.001; Additional file 8: Table S6).

Driver tissues for lipid levels

We applied DESE (Driver-tissue Estimation by Selective Expression) [40] to estimate the 
driver tissues of five lipid traits using both gene-level and transcript-level eQTL sum-
mary statistics from GTEx v8 tissues [41]. We identified liver as the top-ranked tissue 
for HDL-C (gene-level p-value = 4.5 x  10−18, transcript-level p-value = 3.0 x  10−26), TC 
(gene-level p-value = 1.1  x  10−25, transcript-level p-value = 1.4  x  10−33), and nonHDL-
C (gene-level p-value = 2.0  x  10−19, transcript-level p-value = 3.9  x  10−29) based on 
both gene-level and transcript-level selective expression (Additional file  9: Figure S3, 
Additional file 10: Table S7). For LDL-C, we identified the spleen as the top-ranked tis-
sue using GTEx gene-level data (p-value = 8.3 x  10−20), while liver was ranked second 
(p-value = 4.8 x  10−17). However, when using GTEx transcript-level data, liver was the 
top-ranked tissue (p-value = 4.3 x  10−29) and second was whole blood (p-value = 4.3 x 
 10−20). The top tissue for TG according to both GTEx gene-level and transcript-level 
expression data was whole blood (gene-level p-value = 6.4  x  10−20, transcript-level 
p-value = 1.4 x  10−21). Spleen and liver were second according to GTEx gene-level and 
transcript-level expression data, respectively. The results were consistent with previous 
knowledge that the liver is a major tissue for lipid metabolism. Transcript-level selective 
expression provided more statistically significant results for the estimated driver tissues 
compared to the gene-level selective expression, as reported in the original [40].

Polygenic scores for lipid phenotypes and phenome‑wide association scans

We have previously reported that a polygenic score (PGS) for LDL-C was most informa-
tive when generated from the multi-ancestry GWAS and that the multi-ancestry PGS 
performed equally well in European-ancestry Americans, African-ancestry Americans, 
and continental Africans [24]. Using a similar approach, we generated PGS for the other 
four lipid traits (“Methods”).

We next performed a phenome-wide association scan (PheWAS) for the multi-ances-
try lipid PGS (LDL-C PGS previously reported [24]) to identify pleiotropic effects of 
lipids with other traits in the European subsets of the UK Biobank and the Million Vet-
eran Program (MVP) cohorts. We compared the effect sizes from the PheWAS analysis 
between the UK Biobank and MVP per lipid PGS and observed a moderate correlation 
between the two datasets (Additional file  11: Figure S4). The correlation of the PGS 
effects on all phenotypes between the UK Biobank and MVP ranges from 0.12 for the 
HDL-C PGS to 0.39 for the TC PGS (Additional file 11: Figure S4). In general, correla-
tions were stronger for the ICD-10-based phecodes (r2 of 0.42–0.52) compared to the 
biomarkers (r2 of 0.06–0.23) (Additional file 11: Figure S4), which may reflect differences 
in study populations due to varied environmental effects, prevalence of chronic health 
conditions, and sex distribution. Among PheWAS results with p-value ≤ 0.05 in the UK 
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Biobank, the correlation was even higher for ICD-10-based phecodes (r2 of 0.52–0.76) 
but remained the same for the biomarkers (r2 of 0.07–0.22).

We meta-analyzed the results from the two cohorts to increase the power of the 
PheWAS, by matching ICD10-mapped phecodes and biomarkers. In the combined the 
UK Biobank-MVP PheWAS results, we detected 58 phenotypes associated with the 
LDL-C PGS at phenome-wide significance level (p-value ≤ 6.5 ×  10−5, corrected for 773 
phenotypes), 165 with the HDL-C PGS, 59 with the TC PGS, 166 with the TG PGS, 
and 78 with the nonHDL-C PGS (Fig. 2, Additional file 12: Table S8, Additional file 13: 
Figure S5, Additional file 14: Figure S6, Additional file 15: Figure S7, Additional file 16: 
Figure S8). As expected, multiple cardiovascular phenotypes related to atherosclerosis, 
including the expected coronary artery disease as well as aortic aneurysm and essen-
tial hypertension, were phenome-wide significantly associated with all five lipid PGSs, 
indicating increased risk of these diseases for individuals with genetically predicted 
increased LDL-C, TG, TC, or nonHDL-C or genetically predicted decreased HDL-C. 
A recent wide-ranging Mendelian randomization analysis confirmed the causal effect 
of circulating lipids, not only for coronary artery disease, but other cardiovascular out-
comes [42]. Additionally, all lipid PGSs were also significantly associated with decreased 

Fig. 2 PheWAS meta‑analysis results for multi‑ancestry LDL‑C PGS in the UK Biobank and MVP. The blue 
horizontal line denotes phenome‑wide significance (p‑value ≤ 6.5 ×  10−5, to account for multiple testing 
of 773 phenotypes) and the red line is genome‑wide significance (p‑value ≤ 5 ×  10−8). Phenotypes have 
been pruned, so that the most significant one per correlated phenotype group (correlation coefficient > 0.2) 
is retained. Pairwise correlations were estimated with chi‑square test and Cramer’s V for the dichotomous 
phenotypes and Pearson’s correlation for the continuous phenotypes. AAA: abdominal aortic aneurysm, AD: 
Alzheimer’s disease, AST: aspartate aminotransferase, Atherosclerosis*: atherosclerosis of native arteries of the 
extremities with intermittent claudication, Hb_con: hemoglobin concentration, IBD: irritable bowel disease, 
MCH: mean corpuscular hemoglobin, MCV: mean corpuscular volume, PVD: peripheral vascular disease
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levels of direct bilirubin (Additional file 12: Table S8, Fig. 2, Additional file 13: Figure S5, 
Additional file 14: Figure S6, Additional file 15: Figure S7, Additional file 16: Figure S8), 
indicating genetically predicted lower LDL-C increased levels of bilirubin (Fig. 2). Cor-
respondingly, lipid PGSs were associated with lower risk for cholelithiasis (gallstones) 
with the opposite direction for TG PGS, indicating that extreme lowering of LDL-C may 
impact rates of cholelithiasis (Additional file 12: Table S8, Fig. 2, Additional file 13: Fig-
ure S5, Additional file 14: Figure S6, Additional file 15: Figure S7, Additional file 16: Fig-
ure S8). To further clarify whether this association might be driven by the ABCG8 gene 
alone, we excluded from the LDL-PGS all variants within the locus and tested the associ-
ation between LDL-PGS and cholelithiasis in the UK Biobank. There was no attenuation 
of the observed association (OR = 0.94 and p-value = 7.94 ×  10−17 without the ABCG8 
locus vs. OR = 0.93 and p-value = 1.96 ×  10−21).

In the PheWAS analysis, we found that the TC and LDL-C PGS were signifi-
cantly associated with increased levels of HbA1c (beta = 0.101  mmol/mol per 
SD PGS increase, p -value= 1.21 ×  10−23 and beta = 0.095  mmol/mol per SD PGS 
increase, p-value = 4.37 ×  10−21, respectively), while the HDL-C PGS was associ-
ated with decreased levels of HbA1c (beta =  − 0.257  mmol/mol per SD PGS increase, 
p-value = 2.84 ×  10−143) (Additional file 12: Table S8). Furthermore, genetically predicted 
increased LDL-C was significantly associated with decreased hemoglobin concentration 
(p-value = 1.92 ×  10−45, similar significant associations for all other lipid PGSs with a 
reverse direction of effect for TG, Additional file 12: Table S8). As expected, genetically 
predicted increased LDL-C and TC were both associated with increased risk for Alzhei-
mer’s disease [43] (OR = 1.33 per SD PGS increase, p-value = 1.74 ×  10−44 and OR = 1.26 
per SD PGS increase, p-value = 1.48 ×  10−30, respectively; Additional file 12: Table S8). 
To further investigate how this association might be driven by the ApoE locus, we 
excluded all genetic variants overlapping this gene from the LDL-PGS and repeated the 
analysis in the UK Biobank. While the association between the LDL-PGS and the risk for 
Alzheimer’s disease was slightly attenuated after removing the ApoE locus (OR = 1.23 vs. 
1.36 per SD PGS increase), the association remained significant (p-value = 2.51 ×  10−21). 
Recent Mendelian randomization studies also provide evidence for the causal effect of 
lipids on risk for dementia [44] and Alzheimer’s disease [45]. The LDL-C and TC PGSs 
were also associated with increased aspartate aminotransferase levels (a liver enzyme), in 
accordance with other studies [46]. We also observed inverse associations between LDL-
PGS (p-value = 1.43 ×  10−14) and TC PGS (p-value = 8.34 ×  10−14) with the risk of iron 
metabolism disorders (Additional file 12: Table S8).

To better understand the loci that drive the association between each of the lipid PGSs 
and cholelithiasis and cholecystitis, we interrogated the results from the single-variant 
PheWAS meta-analysis in the UK Biobank and MVP with all lipid multi-ancestry index 
variants (N = 1750 unique). We identified 22 genetic variants associated with chole-
lithiasis and/or cholecystitis at genome-wide significance. Genes prioritized for these 
index variants included genes already reported to be associated with gallstone disease 
[47] (CYP7A1, ABCG5/8), as well as additional genes (ABCB4, LRBA, HNF4A, NUCB1, 
GATA4), that may play also a role. Importantly, we found there was overlap (same index 
variant) between the previously published index variants for gallstone disease and our 
lipid index variants for these two loci (Additional file 17: Table S9).
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Lipid loci show sex‑specific effects

Sex-stratified analyses have the potential to identify loci missed by sex-combined analy-
ses [48] as well as to detect loci exhibiting differential effects on lipids between sexes. 
First, we performed GWAS meta-analysis separately in each sex (Nmales = 749,391; Nfe-

males = 562,410), excluding loci discovered in the sex-combined analysis [24]. We iden-
tified twelve loci in females and four in males that reached genome-wide significance 
in the sex-stratified analysis (p-value < 5 ×  10−8; Additional file 18: Table S10, Additional 
file 19: Table S11, Additional file 20: Table S12) but not in the sex-combined meta-anal-
ysis. As variants may show association to a single sex for reasons unrelated to biological 
sex differences, including differences in sample sizes between groups, we additionally 
tested for heterogeneity by sex for these variants in GLGC participating cohorts with 
close to equal number of males and females. Of the sixteen loci, eight showed significant 
sex-heterogeneity (p-value < 0.0031, Bonferroni-corrected threshold for sixteen tests). 
For example, the non-synonymous variant rs34372369 (EPHA1, p.Pro582Leu) is asso-
ciated with nonHDL-C only in females (male p-value > 0.05) and shows significant sex-
heterogeneity (p-value = 0.0012). This variant has been previously found to be linked 
with expression levels of the sex hormone-binding globulin gene (SHBG) more strongly 
in males than females [49], suggesting a possible reason for the difference in observed 
associations. We additionally sought to replicate the sex-heterogeneity results of these 
variants in 8 independent multi-ancestry cohorts (N = 311,639, 77% non-European 
ancestry, Additional file  21: Table  S13). However, we did not detect significant differ-
ences in effect sizes between sexes for these variants after accounting for the number of 
tests (p-value > 0.0031, Additional file 22: Table S14), potentially due to the limited sam-
ple size or difference in ancestry makeup.

Second, we tested for a difference in the male- and female-specific effect sizes for each 
of the index variants identified from the sex-combined multi-ancestry meta-analysis. Of 
the 1750 unique index variants, 64 showed a significant difference in effect size by sex for 
one or more traits (Bonferroni correction for the number of index variants in each trait, 
Additional file 23: Table S15). These were evenly distributed across traits and more often 
had stronger effects in females than males (67%, Additional file 24: Figure S9). We tested 
for replication of the sex-specific differences in up to 311,120 participants from eight 
independent multi-ancestry cohorts not included in the original meta-analysis (Addi-
tional file 21: Table S13). Fifty-four of the 64 (84%) variants had effect size differences 
that were directionally consistent with the original meta-analysis (Additional file  25: 
Table S16). Of these, 10 had significantly different effect sizes (p-value < 7.8 ×  10−4, Bon-
ferroni correction for 64 variants) and 22 were nominally significant (p-value < 0.05). We 
attribute the low rate of replication to the small sample size and the differing proportions 
of ancestry groups within our replication samples, but we cannot dismiss the potential of 
false positives in the sex-specific discovery results.

We tested whether the observed sex differences could be caused by a higher frequency 
of cholesterol-lowering medications in males, potentially indicating an insufficient cor-
rection for pre-medication cholesterol levels. Among white British individuals in the 
UK Biobank, variants with significant sex differences had significantly higher effect 
size estimates on average after excluding individuals on medication (Additional file 26: 
Figure S10, Additional file 27: Table S17). However, of the 17 variants that exhibited a 
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significant difference in effect size by sex in the UK Biobank alone, 15 remained sig-
nificant after excluding individuals taking medications. Based on this observation, the 
observed differences did not appear to be driven solely, or even primarily, by differences 
in medication use between sexes. Furthermore, none of the identified sex-specific vari-
ants were associated with sex-participation bias [50] (Additional file 28: Table S18), indi-
cating that differential study enrollment between sexes was unlikely to be the cause of 
the observed sex-specific lipid associations. We next investigated differences in environ-
mental factors between sexes for these variants in the UK Biobank (Additional file 29: 
Table S19), including alcohol use [48], smoking status [48], body mass index (BMI) [51], 
and waist-hip ratio adjusted for BMI (WHRadjBMI) [51]. Twenty-two of the variants 
(34%) with differential effects on lipids by sex also exhibited a significant difference by 
sex for WHRadjBMI and one variant had a significant difference by sex for alcohol use 
(ADH1B p.His48Arg). The observed sex differences may therefore be partially attributed 
to pleiotropic associations with other traits.

Finally, we annotated each locus that showed significant sex differences with regula-
tory information to identify biological mechanisms that could underlie this difference. 
Of the 64 lipid variants with significant sex-stratified associations, 14 colocalized (pos-
terior probability of H4 > 0.8) with expression of 20 genes in lipid-related tissues (liver, 
adipose, or skeletal muscle; Additional file 30: Table S20). Eight of these loci also show 
a sex-biased eQTL effect in at least one tissue in the direction concordant with the 
observed sex specificity of the GWAS effect (Additional file 30: Table S20). Among these 
ten is CETP, a gene with strong prior evidence for association with lipids, and UGT2B17 
[20] (Additional file  31: Supplementary Note, Fig.  3). The lead variant of UGT2B17, 
rs4860987, shows a significantly stronger effect of LDL-C in males  (Betamale = 0.042, 
 SEmale = 0.002,  Betafemale = 0.016,  SEfemale = 0.003, p-valuedifference = 4.2 ×  10−15) and 
colocalizes with a male-specific liver eQTL associated with increased expression of 
UGT2B17. Common variants at this locus are in moderate LD (R2 = 0.51) with a com-
mon copy number variation (CNV), which may mediate the causal effect (Additional 
file  31: Supplementary Note). UGT2B17 plays a role in the metabolism of androgens 
[52], including testosterone, which is consistent with the observed pleiotropic relation-
ship of this locus with testosterone in males (Additional file 30: Table S20). We note that 
the index variant in UGT2B17, rs4860987, did not show significant sex-specific effects in 
the replication cohorts, but this could be due to varying frequencies for the index vari-
ant between ancestry groups and the moderate LD to the causal CNV in the region. We 
observed that the combined frequency of rs4860987 across the replication studies was 
much lower (8%) compared with our combined frequency in the discovery (24%) due to 
differing proportions of ancestry groups and, along with the lower number of individuals 
(N = 218,437), led to a much-reduced power to replicate this sex-specific effect.

Lipid‑associated loci on the X chromosome

Lastly, we meta-analyzed association statistics for 3.1 million X chromosomal variants, 
including PAR regions, across 1,238,180 individuals from multiple ancestry groups. We 
identified 28 index variants significantly associated with lipid levels (Additional file 32: 
Table S21), of which 21 have not been previously reported [20, 39, 53] (15 for HDL-C, 4 
for LDL-C, 4 for TC, 5 for TG and 4 for nonHDL-C, Table 2). Among these 28 loci, two 
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Fig. 3 Sex specificity at the UGT2B17 Locus. A The association signal for LDL‑C (top panel) colocalizes with 
the UGT2B17 eQTL signal in the liver (bottom panel). B The effect sizes of this variant on LDL‑C and UGT2B17 
expression are both significantly higher for males (red) compared to females (blue)
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have index variants with a minor allele frequency (MAF) < 1% and three index variants 
are missense mutations (in genes ARSL, TSPAN6, and G6PD), all of which are novel. We 
validated the identified X chromosomal associations in up to 255,475 individuals from 
seven multi-ancestry cohorts (Additional file 21: Table S13). Twenty index variants were 
at least nominally associated (p-value < 0.05), with five reaching genome-wide signifi-
cance in the replication cohorts alone (p-value < 5 ×  10−8, Additional file 32: Table S21).

We additionally considered potential sex differences for the X chromosome variants. 
A missense variant in RENBP with MAF = 2.5% reached genome-wide significance only 
in males but was not significant in the sex-combined meta-analysis or in the female-only 
analysis (p-value = 4.59 ×  10−8, 0.003 and 0.2, respectively). We also observe three X 
chromosome loci with significant heterogeneity in effects between sexes; however, these 
were not significant in the replication cohorts alone, possibly due to the lower sample 
size (Bonferroni correction for the number of index variants in each trait, Additional 
file 32: Table S21).

Using a PheWAS approach in the UK Biobank, we found four of the novel loci to have 
pleiotropic associations with body composition traits (FAM9B [HDL-C], EDA2R [HDL, 
TG], TSPAN6 [LDL-C, TC], and DOCK11 [HDL-C]), four variants with coronary ath-
erosclerosis and ischemic heart disease, three with immune-related biomarkers (SLC9A7 
[HDL-C], CLCN5 [HDL-C], THOC2 [HDL-C]), and two with blood clotting-related 
biomarkers (KLF8 [TG], TEX11 [HDL-C]) (Additional file 32: Table S21). Interestingly, 
two of the three sex-biased X chromosome variants demonstrate the most significant 
association with testosterone of all lipid X chromosome variants tested in the PheWAS 
(rs505520: beta/SE =  − 0.089/0.007  nmol/L per TG-increasing allele and rs5934507: 
beta/SE = 0.237/0.006 nmol/L per HDL-increasing allele).

Discussion
In this study, we identify and prioritize likely candidate genes at lipid-associated loci dis-
covered through a variety of approaches including multi-ancestry meta-analysis of auto-
somes [24] (~ 91 million variants) and the X chromosome (~ 3 million variants), as well 
as sex-specific meta-analyses using sample sizes ranging from 1.35 to 1.65 million indi-
viduals. We previously reported a comparison of multi-ancestry vs single-ancestry lipid 
findings using autosomal chromosomes and identified improvements in fine-mapping 
of credible sets and PGS performance, with slight differences in the number of identi-
fied loci by ancestry group [24]. Here, we add X chromosome and sex-specific discovery 
results. We also focus on lipid biology by prioritizing implicated genes, identifying novel 
phenotypes and diseases associated with genetically predicted lipid levels, and predict-
ing candidate drug target genes.

Our results from this effort translate our GWAS findings for three complimentary 
research areas, helping us further elucidate the biological mechanisms underlying the 
lipid-associated genetic variants. We first sought to identify methods for prioritization of 
functional genes at GWAS loci by performing six gene prioritization methods. Lipids are 
an excellent exemplar phenotype for gene prioritization algorithms because of a wealth 
of GWAS loci (~ 1000), Mendelian dyslipidemia genes (21), and mouse dyslipidemia 
phenotypes observed in gene knockouts (740). While the gene prioritization approaches 
are not independent of each other, integrating several prioritization predictors provides 
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higher confidence when attempting to characterize causal genes. Others have also high-
lighted the importance of such frameworks in different diseases [29, 54, 55].

We identify 466 unique genes by combining evidence from a global approach (PoPS) 
with local gene prioritization approaches. The vast majority of these genes had many 
lipid-related publications, suggesting the accuracy of our combined prioritization 
approach. Twenty-three PoPS + identified genes had no lipid-related publications, indi-
cating they could be truly novel or possibly were incorrectly prioritized. Functional 
validation of the larger pool of prioritized genes, which will require highly parallel exper-
imental methods, will help to further optimize bioinformatics algorithms to prioritize 
genes and is beyond the scope of this manuscript.

Our prioritization approach also indicates several genes as potential drug targets 
including PDE3A and NR1H4. PDE3A encodes the phosphodiesterase 3A gene and is 
predicted to be druggable as phosphodiesterase 3A inhibitor (CILOSTAZOL). Cilosta-
zol has antiplatelet, anti-proliferative, vasodilatory, and ischemic-reperfusion protective 
properties [56] and has been previously suggested for the primary or secondary preven-
tion of CAD [22]. NR1H4 encodes a bile acid receptor and regulates the expression of 
genes involved in bile acid synthesis and transport. The target gene is predicted to be 
druggable as a bile acid receptor FXR agonist (URSODIOL). Ursodiol is used to treat 
primary biliary cirrhosis and cholelithiasis and could be a potential candidate for drug 
repurposing.

We also identify eighteen coding variants where the protective lipid allele is also pro-
tective for CAD or T2D. Among these, PCSK9 is a well-documented drug target, not 
only for lipids but also for cardiovascular events [57–59]. In comparison to published 
studies [60], others find a non-significant increased risk for T2D [61] and an arguably 
stronger protective effect for CAD [62], for PCSK9 variant carriers. Our observation is 
consistent with the lack of excess T2D risk observed in PCSK9 inhibitor clinical trials 
[57–59, 63] and with strong protective effects for coronary heart disease [64]. Further-
more, these variants are potential therapeutic targets for protective lipid profiles and 
lowering risk of disease.

Our second goal was to identify diseases that may benefit from lipid-lowering as well 
as diseases or traits that may become problematic due to very low lipids. To accom-
plish this, we examined the association of genetically predicted lipid traits (using PGS) 
with 773 phenotypes in 478,556 individuals. We observed that genetically predicted 
increased LDL-C, TC, and HDL-C levels, or decreased TG levels, decrease the risk of 
cholelithiasis. Prior epidemiological studies have not consistently reported an associa-
tion between lipid levels and risk of gallstones, with some studies showing that increased 
levels of LDL-C, TC, and TG and decreased levels of HDL-C predispose to the risk for 
cholelithiasis [65, 66], but others showing no association [67, 68]. Our results are cor-
roborated by a recent Mendelian randomization meta-analysis study in the FinGen and 
UK Biobank cohorts [69]. The prioritized genes for the individual index lipid variants 
significantly associated with cholelithiasis in the PheWAS analysis include ABCG8, 
a hepatic cholesterol transporter, responsible for the efflux of cholesterol from the 
enterocytes to the lumen and from the hepatocytes into bile [70]. The lipid-decreasing 
allele of index variant in ABCG8, rs4245791, has been previously associated with high 
risk for gallstone disease [47] and high intestinal cholesterol absorption [71], possibly 
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mediated by an increased expression of ABCG8 [72]. Furthermore, even after excluding 
ABCG5/8 variants from the LDL-PGS, the association with the risk of cholelithiasis was 
not attenuated. These PGS-PheWAS results suggest the existence of many other cho-
lesterol transporters like ABCG8 that modify blood cholesterol levels perhaps in large 
part by facilitating an increased secretion of cholesterol into the biliary system, which 
in turn increases the risk of the formation of gallstones through the supersaturation of 
bile. We also observed that HbA1c levels were elevated among subjects with genetically 
predicted increased LDL-C and TC and with genetically predicted decreased HDL-C. 
Previous epidemiological studies have established associations between dyslipidemia 
(increased LDL-C, TC, TG, and decreased HDL-C levels) and increased HbA1c levels 
among subjects with T2D, as well as insulin-resistant subjects without diabetes [73, 74]. 
Our observations support a strong genetic basis to these associations and are in accord-
ance with previous studies showing shared pathways between lipid biology, T2D, and 
HbA1c [75], as well as pleiotropic effects of blood red cell variants with lipid levels [76]. 
Mendelian randomization studies have shown that hemoglobin and LDL show bidirec-
tional inverse relationships and hemoglobin effects on LDL are also mediated through 
Hb1Ac, implying that genetic variation influencing erythrocytic factors could also deter-
mine lipid levels and the opposite [77]. While most of our significant PheWAS findings 
could be confirmed via Mendelian randomization studies, we cannot exclude the possi-
bility of spurious associations due to pleiotropy.

Lastly, we sought to expand the coverage of the genome and performed the most 
comprehensive GWAS of lipid levels to date by including assessment of 3 million 
variants on the X chromosome as well as explicitly testing for sex-specific effects 
across 23 chromosomes in 1.35 million individuals of diverse ancestries. We report 
21 novel X chromosome loci, including an LDL-lowering locus involving a missense 
variant in G6PD, known to cause G6PD deficiency (p.V68M) [78]. The proposed 
mechanism is via the inhibition of the NADPH-dependent hydroxymethylglutaryl-
CoA (HMG-CoA) reductase, resulting in decreased cholesterol biosynthesis, even 
though the protective effect of the G6PD deficiency on cardiovascular risk is debat-
able [79].

We also observed that approximately 3–5% of the genome-wide lipid index variants 
exhibited differential effects between sexes, which did not seem to be due to differen-
tial prevalence in the use of lipid medications or study selection bias. These findings 
may have important implications in the interpretation of lipid biology, the identification 
of novel drug targets, and possibly for more accurate prediction of blood cholesterol-
related conditions. For example, the UGT2B17 locus, one of the ten sex-biased loci with 
corresponding sex-biased eQTL effect, is known to be implicated in androgen and drug 
metabolism [52]. A common CNV in the region, partially tagged by the lipid index vari-
ant, is associated with significant variations in expression levels between ethnic groups 
[80], which would explain lack of replication in the set of independent studies, and the 
deletion has been linked to testosterone-related decreased BMI levels [81], as well as 
decreased risk for osteoporosis in men [82].

Several of the reported sex-biased and X chromosome loci showed significant 
pleiotropic effects with sex hormone levels, including testosterone and SHBG, high-
lighting the role of hormone regulation in lipid metabolism [83]. In particular, we 
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observe an overall inverse effect between the X chromosome lipid index variants and 
the sex hormone levels. Observational studies have long suggested a potential influ-
ence of the sex hormones on the risk for cardiovascular risk [84] but this hypothesis 
has not been consistently supported by recent Mendelian randomization studies, 
raising the issues of reverse causality [85, 86].

Conclusions
In conclusion, we leverage the power of a large multi-ancestry GWAS study to fur-
ther our understanding of lipid metabolism and the impact on chronic diseases. We 
identify novel lipid loci on the X chromosome and autosomal loci with evident sex-
biased lipid effects. We compare a range of gene prioritizing methods to identify 
causal genes, an approach applicable to studying other complex traits. We addition-
ally further our understanding of lipid metabolism through a phenome-wide study 
that implicates a relationship between genetically predicted low cholesterol with risk 
of cholelithiasis.

Methods
Meta‑analysis

Summary statistics for sex-combined autosomal analyses were previously pub-
lished [24]. Following the same procedure, we carried out meta-analyses stratified by 
sex for 5 lipid traits (HDL-C, LDL-C, TG, nonHDL-C, and TC) for both the auto-
somes and chromosome X. The sample size for chromosome X (Total N = 1,238,180; 
males = 749,391; females = 562,410) was lower than available for autosomes as not all 
participating biobanks submitted results for chromosome X. Quality control of sum-
mary statistics from contributing cohorts was performed using EasyQC [87]. Prior 
to meta-analysis, we removed variants with low imputation info scores (r2 < 0.3), 
those with minor allele count < 3, and those with Hardy–Weinberg equilibrium 
p-value < 1 ×  10−8. Variants on the X chromosome were filtered using the female 
imputation info scores and Hardy–Weinberg equilibrium p-values. Summary statis-
tics were corrected by the genomic-control factor calculated from the median p-value 
of variants with minor allele frequency > 0.5%. For cohorts that contributed summary 
statistics imputed both on the Haplotype Reference Consortium (HRC) and 1000 
Genomes Population v3 (1KGP3) panels, we generated a single file containing all pos-
sible variants, favoring those imputed from the HRC imputation panel due to gen-
erally higher imputation quality of these variants. Multi-ancestry meta-analysis was 
performed with MR-MEGA [88] with 5 principal components and using the inverse-
variance weighted method in METAL to estimate effect sizes [89]. Independent loci 
were defined with physical distance > 500 kb or genetic distance > 0.25 cM, whichever 
one would result in a larger window, followed by a conditional analysis using rareG-
WAMA [90] as previously described [24], to identify index variants that were shad-
ows of nearby, more-significant associations. Conditional analysis for chromosome X 
used a female-only UK Biobank LD reference (N = 21,510). In line with the analysis in 
the autosomes, a locus was identified as dependent if the effect size after conditioning 
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on the most significant variant in the area was more than 1.43 times smaller than the 
original (95th percentile of the effect size ratios for chromosome X).

Differences in effect size between males and females were tested within each cohort 
using [91]:

and were then meta-analyzed across studies using METAL, to account for cohort-spe-
cific ascertainment (e.g., enrichment of cases for type 2 diabetes), or demographics, such 
as age.

Replication

We collected summary statistics from 8 cohorts across 6 ancestry groups, includ-
ing African or African American, East Asian, European, Hispanic, Middle Eastern, 
and South Asian. Each cohort provided sex-stratified and X chromosome association 
results for the tested traits, as available. The difference in effect sizes between males 
and females was calculated within each cohort as described above and then meta-
analyzed across studies using METAL. X chromosome association results were meta-
analyzed using METAL with weighting by sample size.

Gene prioritization methods

Closest gene

We annotated the closest gene to the lipid multi-ancestry index variants [24] by identify-
ing the closest gene transcript on either side (500 kb) of the index variant [92].

Colocalization with GTEx eQTLs

For each of the five lipid phenotypes, we first lifted over GWAS summary statistics 
from the multi-ancestry meta-analysis [24] to GRCh38 using the UCSC liftOver tool. 
Then, we defined a set of approximately independent windows across the genome within 
which colocalization with eQTLs was run. To define these, we first identified all genome-
wide significant variants (p-value < 5e − 08) from the meta-analysis for each lipid trait 
and sorted them by significance, from most significant to least. Starting with the most 
significant variant, we aimed to define a window defining independent genetic signals; 
we define a variant’s window as a region within the greater of 500  kb or 0.25  cM on 
either side of this “sentinel variant.” Genetic distances were defined using reference maps 
from HapMap 3. All other genome-wide significant variants within this window were 
discarded from the list of sentinel variants, and similar windows were defined for the 
remaining genome-wide significant variants.

We ran an eQTL colocalization using GTEx v8 eQTL summary statistics within each 
of our defined windows for all lipid traits. For each of the 49 GTEx tissues, we first iden-
tified all genes within 1 Mb of the sentinel variant, and then restricted analysis to those 
genes with eQTLs (“eGenes”) in that tissue (FDR < 0.05). We used the R package “coloc” 

Z =
Bm − Bf

se2m + se2f − 2 ∗ r ∗ sef ∗ sem
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(run on R version 3.4.3, coloc version 3.2.1) [93] with default parameters to run colo-
calization between the GWAS signal and the eQTL signal for each of these cis-eGenes, 
using as input those variants in the defined window, i.e., all variants present in both 
datasets. A colocalization posterior probability of (PP3 + PP4) > 0.8 was used to identify 
loci with enough colocalization power, and PP4/PP3 > 0.9 was used to define those loci 
that show significant colocalization [94].

Transcriptome‑wide association studies (TWAS)

For our transcriptome-wide association analysis (TWAS), we integrated the results of 
our GWAS with eQTL summary statistics from GTEx v8. The S-PrediXcan software 
[95] allows us to integrate these two datasets using only summary statistics from GWAS 
without needing individual-level genotype data. We used the multi-ancestry lipid GWAS 
summary statistics [24] and harmonized them with the GTEx summary statistics. Then 
we performed the TWAS using the eQTL models estimated on GTEx v8 expression 
data. For each of the 49 GTEx tissues, we identified “significant genes” those genes with 
p-values more significant than an FDR threshold of 0.05.

Genes with coding variants

We determine the coding variants within 99% credible sets and the coding variants in 
LD > 0.8 with variants in the 99% credible sets with the credible sets as defined here [24]. 
We define regions for construction of the credible sets as ± 500 kb around each index 
variant. We used Bayes factors (BFs) for each variant from the MR-MEGA output and 
generated the credible sets within each region by ranking all variants by BF and cal-
culating the number of variants required to reach a cumulative probability of at least 
99%. Additionally, we used previously established gene-based associations [96] to deter-
mine whether rare coding variation in a gene were associated with blood lipid levels 
(p < 0.001). We labeled a gene as having coding variants if any of these criteria were met.

DEPICT

We used Data-driven Expression-Prioritized Integration for Complex Traits (DEPICT, 
v1 beta version rel194 for 1 KG imputed GWAS) to prioritize genes at our index vari-
ants, on the assumption that truly associated genes share functional annotations [27]. 
Index variants [24] with p-value < 5 x  10−8 were retained as input. We implemented the 
DEPICT analysis with the default settings of 500 permutations for bias adjustment and 
20 replications for FDR estimation. DEPICT prioritizes genes by calculating the similar-
ity of a given gene to genes from other associated loci across 14,461 reconstituted gene 
sets and estimates the nominal gene prioritization p-value and the estimated false dis-
covery rate of each gene. The prioritized genes at FDR < 0.05 were considered significant.

PoPS

We used the PoPS method to prioritize genes in the previously reported [24] multi-
ancestry index variants for all lipid traits. The PoPS method [28] is a new gene prioriti-
zation method that identifies the causal genes by integrating GWAS summary statistics 
with gene expression, biological pathway, and predicted protein–protein interaction 
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data. First, as part of the PoPS analysis, we used MAGMA to compute gene associa-
tion statistics (z-scores) and gene–gene correlations from GWAS summary statistics 
and LD information from a multi-ancestry reference panel (1000 Genomes). Next, PoPS 
performs marginal feature selection by using MAGMA to perform enrichment analy-
sis for each gene feature separately. The model is fitted by generalized least squares 
(GLS), and MAGMA results are used to perform marginal feature selection, retaining 
only features that pass a nominal significance threshold (p < 0.05). Then PoPS computes 
a joint enrichment of all selected features simultaneously in a leave one chromosome out 
(LOCO) framework. The gene features employed by PoPS are listed here: https:// github. 
com/ Finuc aneLab/ gene_ featu res. Finally, PoPS computes polygenic priority scores for 
each gene by fitting a joint model for the enrichment of all selected features. The PoPS 
score for a gene is independent of the GWAS data on the chromosome where the gene is 
located. The PoPS analysis returned scores for a total of 18,383 genes per lipid trait. We 
only kept the top 20% genes among all 18,383 genes. We then annotated our index vari-
ants with the nearest ENSEMBL genes in a 500-kb window (either side) and selected the 
highest PoPS score gene in the locus as the prioritized one.

We performed the PoPS analysis on our lipid-specific multi-ancestry meta-analysis 
results, using all populations from 1000G as the reference for the LD information in 
MAGMA. As a sensitivity step, we also repeated the same analysis using only the Euro-
pean population from 1000G as the reference. We observed high concordance in the top 
two PoPS prioritized genes from both reference panels. In detail, the same 2119 genes 
(89%) were prioritized as the top genes from both panels, a further 203 genes were prior-
itized as a top gene with one panel and as the second top with the other and only 7 genes 
were completely mismatched between the two reference panels.

Monogenic genes

We annotated genes known to cause Mendelian lipid disorders based on proximity with 
identified GWAS loci [97, 98]. GWAS index variants within ± 500 kb of the transcription 
start and end positions from the USCS genome browser annotations were annotated as 
nearby known monogenic dyslipidemia genes.

Mouse knockout lipid phenotype silver set genes

Human gene symbols (9557 unique genes) were mapped to gene identifiers (HGNC) 
and their corresponding mouse ortholog genes were obtained using Ensembl (www. 
ensem bl. org). Phenotype data for single-gene knockout mouse models were obtained 
from the International Mouse Phenotyping Consortium (IMPC) (www. mouse pheno 
type. org) latest data release 12.0 (www. mouse pheno type. org/ data/ relea se). The knock-
out mouse models were primarily produced by IMPC but also include some models that 
have been reported from the relevant literature and were curated by Mouse Genome 
Informatics (MGI) data release 6.16 (www. infor matics. jax. org). For each mouse model, 
reported phenotypes were grouped using the mammalian phenotype ontology hierar-
chy into broad categories relevant to lipids: growth and body weight (MP:0001259), lipid 
homeostasis (MP:0002118), cholesterol homeostasis (MP:0005278), and lipid metabo-
lism (MP:0013245). This resulted in mapping of human genes to significant phenotypes 
in animals.

https://github.com/FinucaneLab/gene_features
https://github.com/FinucaneLab/gene_features
http://www.ensembl.org
http://www.ensembl.org
http://www.mousephenotype.org
http://www.mousephenotype.org
http://www.mousephenotype.org/data/release
http://www.informatics.jax.org
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For each of the multi-ancestry lipid index variant [24], we mapped the closest gene 
to the knockout mouse phenotypes and curated the set to only include mouse pheno-
types strictly relating to lipid metabolism. That resulted in our silver set of 740 genes 
with mouse lipid phenotypes (Additional file 33: Table S22).

Overlap between methods

We standardized the gene names across different methods using the R/geneSynonym 
package, a wrapper to gene synonym information in ftp:// ftp. ncbi. nlm. nih. gov/ gene/ 
DATA/ gene_ info. gz. We also quantified how often the same gene was prioritized by 
multiple methods for each index variant and determined scores that ranged from 1 to 6 
(S1-S6), based on the number of methods that prioritized the gene.

We integrated multiple gene prioritization methods to identify likely causal genes in 
the latest global lipid genetics consortium GWAS results. In total, we have implemented 
the 6 individual gene prioritization methods above that utilize the GWAS summary 
statistics from meta-analysis. Our gene prioritization methods can be placed into two 
broad categories, the locus-specific methods and the genome-wide methods. The locus-
specific methods leverage local GWAS data by connecting the causal variants to the 
causal gene(s) using genomic distance, eQTLs, or protein-coding variants.

More specifically, there are four locus-specific methods that have been implemented 
including: (1) The closest protein-coding gene around the index variants based on the 
genomic distance, (2) eQTL colocalization using r COLOC package, (3) TWAS using 
S-PrediXcan, (4) coding variants which have been identified in 99% credible sets OR in 
LD > 0.8 with coding variants OR from gene-based tests (p < 0.001) of rare coding vari-
ants. For the eQTL and TWAS, we first used all the 49 GTEx tissues and then restricted 
to only 5 lipid-specific tissues: liver, adipose subcutaneous, adipose visceral, whole 
blood, and small intestine. In addition, two genome-wide methods were employed: (1) 
DEPICT (FDR < 0.05), (2) PoPS (Top 1 gene). It is reasonable to combine similarity-based 
methods with locus-based methods since they use two different sources of information.

To determine the relative performance of each prioritization method and their com-
bined scores for lipid loci, we used 21 genes known to cause Mendelian dyslipidemias 
as a gold standard set (ABCA1, ABCG5, ANGPTL3, APOA5, APOB, APOE, CETP, 
CYP27A1, GPD1, GPIHBP1, LCAT , LDLR, LDLRAP1, LIPA, LIPC, LMF1, LPL, MTTP, 
PCSK9, SAR1B, SCARB1), and 740 mouse knockout genes causing lipid phenotypes as 
a silver standard set (Additional file 33: Table S22). We examined two metrics for each 
gene prioritization approach: (1) the proportion of prioritized genes in the gold/silver 
standard set, and (2) the proportion of correctly identified genes among all prioritized 
genes (Additional file 3: Figure S1). Note that out of the 2286 lipid associations, 97 fell 
within 500 kb of a Mendelian gene and 1280 within 500 kb of a mouse knockout gene 
with a lipid phenotype. We observed that the TWAS results yielded a high number of 
prioritized genes, but lead to a low proportion correctly identified. The TWAS approach 
had a much smaller proportion of genes correctly prioritized among all the prioritized 
genes, given it prioritized a total of 3511 genes, which was 3.5-fold greater than the other 
methods (~ 1000 genes). Notably, PoPS provided a similar proportion of correctly identi-
fied genes (78%) as of TWAS, while retained a high proportion of prioritized genes in 
the gold standard set (67%). Compared with PoPS, PoPS + (PoPS plus one of the local 

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene_info.gz
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene_info.gz
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methods) slightly sacrificed the proportion of correctly identified genes from 78 to 71%, 
but improved the proportion of prioritized genes in the gold standard set from 67% 
to 79%. Overall, PoPS/PoPS + outperform other gene prioritization methods on both 
metrics for our gold (Additional file 3: Figure S1A) and silver (Additional file 3: Figure 
S1B) standard gene sets. We also assessed lipid-relevant tissue (liver, subcutaneous and 
visceral adipose, whole blood, and small intestine) expression QTLs (lipid eQTLs) and 
transcriptome-wide association (lipid TWAS) and found that the expression results 
from all tissues performed slightly better at recovering the reference gene sets compared 
with limiting to the lipid-relevant tissues (Additional file 3: Figure S1).

Text mining analysis

We retrieved the whole MEDLINE/PubMed titles and abstracts as of March 06, 2022, 
from National Library of Medicine (https:// ftp. ncbi. nlm. nih. gov/ pubmed/ basel ine/; 
https:// ftp. ncbi. nlm. nih. gov/ pubmed/ updat efiles/). We then examined whether a list 
of genes prioritized by PoPS + and any one of the lipid-related keywords (lipid, lipids, 
triglyceride, triglycerides, fatty acid, cholesterol, dyslipidemias, hyperlipidemia, hyper-
cholesteremia, diabetes, type 2 diabetes, type II diabetes, heart, cardiovascular, artery, 
coronary, coronary artery, coronary heart, atherosclerosis, peripheral vascular, PAD, 
stroke) occurred in the same abstract. We counted how many lipid-related publications 
that have a specific gene co-occurred with at least one lipid-related keyword. The same 
text mining approach was also implemented to a set of randomly selected genes from the 
18,383 protein-coding genes used by the PoPS. We estimated the number of lipid-related 
publications we would expect to see by chance. A Mann–Whitney U test was performed 
to show whether there was a significant difference between the number of lipid-related 
publications of the PoPS + gene set and reference gene set.

Drug target mining analysis

To gain therapeutic insights from our gene prioritization results, we performed a lookup 
in Therapeutic Target Database (TTD) 2022 [99] (http:// db. idrbl ab. net/ ttd/). Specifically, 
we cross-referenced 466 unique lipid-associated genes prioritized by PoPS + (Additional 
file 2: Table S2) with 1563 genes corresponding to at least one drug (either under devel-
opment or approved) with known clinical indication in TTD 2022. As a quality control 
for this lookup, we excluded all TTD entries related to drugs that were discontinued, 
terminated, or withdrawn from the market. The full lookup results are available in Addi-
tional file 8: Table S6.

Driver tissues for lipid levels

We performed phenotype-tissue association analysis using DESE (driver-tissue estima-
tion by selective expression) [40]. DESE estimates the causal tissues by selective expres-
sion of phenotype-associated genes in GWAS. We used the GWAS summary statistics 
from the five lipid traits and the GTEx v8 normalized gene-level and transcript-level 
expression datasets as input. SNPs inside a gene and its ± 5 kb adjacent regions were first 
mapped to the gene, and then DESE ran iteratively to produce a list of driver tissues and 
the corresponding p-values of the associations. We used a Bonferroni-corrected signifi-
cance threshold of 0.05/54 = 9.3 x  10−4.

https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/
https://ftp.ncbi.nlm.nih.gov/pubmed/updatefiles/
http://db.idrblab.net/ttd/
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PheWAS analysis

Construction of lipid PGSs

We had previously developed a multi-ancestry PGS for LDL-C that was demonstrated 
to perform well across multiple ancestry groups [24]. In a similar manner, we also gen-
erated PGS for HDL-C, nonHDL-C, TC, and triglycerides. First, multi-ancestry meta-
analysis results were generated with METAL [89] after excluding individuals from the 
Michigan Genomics Initiative and the UK Biobank. The set of variants used to construct 
the PGS was limited to those that were well-imputed (R2 > 0.3) in MGI, UK Biobank, and 
MVP. Risk scores based on PRS-CS [100] or pruning and thresholding with Plink [101] 
across several r2 (0.1, 0.2), distance (250 kb, 500 kb), and p-value thresholds (5 ×  10−10, 
5 ×  10−9, 5 ×  10−8, 5 ×  10−7, 5 ×  10−6, 5 ×  10−5, 5 ×  10−4, 5 ×  10−3, 0.05) were developed. 
For each trait, the single best score was selected based on the adjusted r2 calculated in 
the UK Biobank of the linear model for the lipid trait with the risk score and age, sex, 
batch, and PC1-4 as covariates. This corresponded to PRS-CS for HDL-C and non-
HDL-C and pruning and thresholding for LDL-C (r2 = 0.1, p-value = 5 ×  10−4, 500 kb), 
TG (r2 = 0.1, p-value = 5 ×  10−3, 500  kb), and TC (r2 = 0.1, p-value = 5 ×  10−4, 500  kb). 
The variance explained by the risk score among the UK Biobank participants was simi-
lar across traits (adjusted r2 of the full model-adjusted r2 of covariates: HDL-C = 0.13; 
LDL-C = 0.15; nonHDL-C = 0.14; TC = 0.14; TG = 0.10) and validated the ability of the 
risk score to predict genetically increased lipid levels.

PheWAS of lipid PGSs and index lipid variants in the UK Biobank and MVP

We used the European ancestry subset of individuals from the UK Biobank (408,886 
samples) and the European samples from MVP (69,670 samples) to perform the PheWAS 
analysis.

We constructed a weighted PGS for each of the lipid traits, based on the correspond-
ing genome-wide significant multi-ancestry index variants. We used the PheWAS 
package in R [102] to map ICD-10 codes from hospital records into clinically relevant 
phenotypes (phecodes) and to implement these association analyses, while adjusting for 
sex, age, 10 genetic principal components, and genotyping array (for the UK Biobank 
only) in each cohort. For the lipid-PGS PheWAS, each PGS was inverse normalized prior 
to analysis and lipid levels were corrected for statin use. The MVP samples used for the 
PheWAS analysis were not included in the GWAS meta-analysis [24].

Similarly, we extracted all multi-ancestry autosomal index variants for all lipid traits 
from the same European ancestry subset of the UK Biobank and MVP and performed 
a single-variant PheWAS association analysis per cohort. Additionally, we performed a 
single-variant PheWAS association analysis in the UK Biobank only with the sex-strati-
fied and X chromosome index variants from the multi-ancestry analysis.

Meta‑analysis of MVP and the UK Biobank PheWAS results

We combined, via meta-analysis, PheWAS lipid-specific PGS results for all intersect-
ing phecodes and biomarkers between the UK Biobank and MVP (Europeans only) per 
lipid trait. We used ICD10-based phecodes and manually matched biomarkers to iden-
tify intersecting phenotypes between the two datasets. We restricted our meta-analy-
sis to phenotypes that had at least 100 samples (total number for continuous traits or 
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number of cases for binary traits) in each cohort. After the meta-analysis, we excluded 
phenotypes that had less than 500 combined samples (total number for continuous traits 
or number of cases for binary traits), to avoid reporting spurious results [103]. That 
resulted in a total of 773 phenotypes (739 phecodes and 34 biomarkers/measurements). 
We used both fixed and random effects model for the meta-analysis. We assessed het-
erogeneity using the p-value for Cochran’s q and set the level for significant heteroge-
neity at a Bonferroni threshold (p-value ≤ 6.5 ×  10−5, to account for multiple testing of 
773 phenotypes). We report the results from the fixed-effects model for the phenotypes 
with non-significant heterogeneity and the results from the random effects model for all 
others. Similarly, we meta-analyzed all index-variant PheWAS results between the UK 
Biobank and MVP and obtained results for 811 phenotypes and 1750 lipid multi-ances-
try index variants, after excluding instances with a combined sample size < 500.

Lipid index variants with CAD, T2D, and NAFLD datasets

The GWAS meta-analysis results of CAD and T2D were acquired from MVP [62] and 
DIAGRAM Consortium [61], respectively. For variant rs1229984, the CAD result is 
from CARDIoGRAMPlusC4D meta-analysis [104], as it was not present in the MVP 
results. The NAFLD GWAS and meta-analysis was performed in the UK Biobank and 
Michigan Genomics Initiative (MGI). We determined the association of the lipid index 
variants with CAD, T2D, and NAFLD and aligned the alleles across all the traits to the 
LDL-lowering allele. We then highlighted the protective lipid coding alleles associated 
with CAD.

GWAS and meta‑analysis of NAFLD in the UK Biobank and Michigan Genomics Initiative (MGI)

Individuals with NAFLD were identified using ICD-9 571.8 and ICD-10 K76.0. Indi-
viduals with hepatitis, liver cirrhosis, liver abscess, ascites, a liver transplant, hepato-
megaly, jaundice, or with abnormal result of serum enzyme levels or a function study 
of the liver were excluded (exclusion phecodes 70.2, 70.3, 571.51, 571.6, 571.8, 571.81, 
572, 573, 573.2, 573.3, 573.5, 573.7, 573.9) [105]. Analysis was performed using SAIGE 
v43.3 [106]. Analysis in the UK Biobank included white British individuals with batch, 
sex, birth year, and the first 4 genetic principal components as covariates. A total of 1122 
cases and 399,900 controls were included in the analysis. Analysis in MGI included only 
European-ancestry participants with array version, sex, birth year, and the first 4 genetic 
principal components as covariates. A total of 2901 cases and 49,098 controls were ana-
lyzed. Meta-analysis was performed using METAL with weighting based on the effective 
sample size calculated as 4/((1/Ncases) + (1/Ncontrols)).

CAD/T2D colocalization analysis with lipid traits

We used R package coloc v3.2.1 [93] to perform summary statistics-based colocalization 
via a Bayesian approach and test whether the 5 lipid traits share common genetic causal 
variants with CAD or T2D. We first defined a window of ± 100 kb around each index 
variant [24]. Then for each window of the 10 pairs of traits, we ran colocalization with 
default parameters using those SNPs present in both datasets. A colocalization posterior 
probability of PP4 > 0.8 was used to define those loci that show significant colocalization.
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